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Abstract

For centuries, �ndings from comparative studies have provided new insights into the process of

evolution. For many of the most interesting questions in biology a variety of hypotheses have been

proposed, but exceptionally few species have been studied to test these hypotheses comparatively.

But which species should be studied? By taking the hypotheses, comparative data relevant to the

question of interest and a speci�c phylogeny, we can identify which species would provide the most

compelling tests of hypotheses. This is particularly important, because studying species is both

expensive and time-consuming. It is achieved by generating all possible pairwise comparisons and

scoring them in relation to their relevance, and can also be used to identify missing data points in

the phylogeny. Using this method of `phylogenetic targeting', gaps in our knowledge of particular

lineages as well as in relation to particular biological traits of interest can be revealed. These gaps,

if systematically biased towards particular species or lineages, can generate noticeable statistical

biases in comparative studies. Additionally, we developed a web-based, freely available and pub-

licly accessible computer program, PhyloTargeting, which implements this idea. In summary, we

provide a new systematic, quantitative and phylogenetic approach to identifying where future re-

search e�ort should be placed. As an example, we apply a sleep dataset to the program to identify

key species that need to be studied to test hypotheses related to the function and evolution of

sleep, such as if sleep is pro�table for the brain or not.

Zusammenfassung

Seit Jahrzehnten haben Vergleichsstudien neue Erkenntisse über den Evolutionsprozess geliefert.

Für viele wichtige biologische Fragestellungen wurden eine Reihe von Hypothesen vorgeschlagen,

aber auÿergewöhnlich wenige Spezies wurden studiert, um diese Hypothesen vergleichend zu te-

sten. Doch welche Spezies sollten studiert werden? Gibt es phylogenetische Verzerrungen bei schon

vorhandenen Daten? Durch Generierung aller möglichen paarweisen Kombinationen von Spezies

und anschlieÿender Bewertung mittels geeigneter Scoringfunktionen können wir Spezies identi�zie-

ren, die am aussagekräftigsten für zukünftige Datenerhebung sind. Dies ist besonders wichtig, denn

Datenerhebung ist oft zeitaufwändig und teuer. Ein weiteres Anwendungsgebiet ist die Aufdeckung

von fehlenden Datenpunkten in der Phylogenie. Benötigt werden dafür nur konkrete Hypothesen,

Daten relevant zur Fragestellung, und eine konkreten Phylogenie. Durch �phylogenetisches Tar-

geting� können also Wissenslücken in Bezug auf Abstammungen oder biologische Fragestellungen

o�enbart werden. Diese Lücken können, falls systematisch verzerrt, einen deutlichen Bias in Ver-

gleichsstudien erzeugen. Zusätzlich haben wir ein web-basiertes, frei verfügbares und ö�entlich

zugängiges Computerprogramm, PhyloTargeting, entwickelt, dass diese Idee umsetzt. Zusammen-

fassend stellen wir also einen neuen, sytematischen, quantitativen und phylogenetischen Ansatz

vor, um die Richtung von zukünftigen Forschungsaufwand zu konkretisieren. Als Beispiel wird

ein Datensatz mit Hypothesen zur Evolution und Funktion von Schlaf mithilfe des Programmes

ausgewertet. Insbesondere identi�zieren wir Schlüsselspezies für die Hypothese, dass Schlaf für das

Gehirn pro�tabel ist.
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Chapter 1

Introduction

�The important thing in science is not so much to obtain new facts as to discover new ways of

thinking about them.�

Sir William Bragg (1862 - 1942)

1.1 Motivation

Evolution, a fundamental and pervasive process, has always been an intensively debated topic,

because the history of life on earth has left such an incomplete record. However, a wealth of

research has provided new insights and methods to explore evolutionary questions across a variety

of domains and species. Due to the relentless data explosion in biology and bioinformatics1 and

the increases in phylogenetic methodologies, we can now con�dently generate phylogenetic trees

for a diverse range of organisms.

These increases are one major reason for the surge of interest in comparative studies and the

comparative approach in general. Nowadays, explicit phylogenetically based comparative meth-

ods (e.g., phylogenetic independent contrasts [18]) are the most general for asking questions about

common or shared patterns of evolutionary change. They draw inferences about the rise of vari-

ation in character by analyzing interspecies variation. Usually, this involves testing evolutionary

hypotheses on how these patterns may have evolved using statistical methods [1].

Ideally, but rarely, the full range of variation in a character is available to test the hypotheses.

For example, a `mouse to elephant curve' [3, p.215] is used in comparative studies which test the

metabolic rate in di�erent organisms [37]. Unfortunately often, only a limited range of variation is

available and general implications of the study can be seriously a�ected by this. It is worthwhile

to increase the variation of the character to have a broader spectrum of the entire variation, but

for this, we must answer the question of which species warrant further study (`key species'). For

example, we have to �nd species that extend the available spectrum of variation to strengthen the

generality of the study �nding.

1e.g., the GenBank release notes for release 162.0 (October, 2007) state that �from 1982 to the present, the number
of bases in GenBank has doubled approximately every 18 months.�
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Chapter 1 Introduction

Comparative data can also reveal gaps in our understanding of biological features. These gaps,

if systematically biased towards particular species or lineages, can generate noticeable statistical

biases in comparative studies (e.g., see next section). It is common to read in write-ups of compar-

ative studies that further sampling is needed, but no solution to identifying the most signi�cant

of these gaps has been given.

These di�erent kinds of biases � variation biases and gap biases � can make a momentous di�erence

to the conclusions one draws. Indeed, there have been cases where previous conclusions have been

rejected or altered. One example is the work of Hamilton and Zuk [30], who studied the dependency

of parasitism and mate choice in birds. Read and Harvey [69] reanalyzed this work by using a

similar dataset and a more modern method. However, possibly the most important is that they

included certain taxa to cover a broader spectrum of species. In summary, they did not �nd any

support for the original hypothesis. There have also been cases where researchers resurrected

hypotheses that were previously rejected (e.g., relationship between clutch size and egg size in

birds [6], and clutch size and life span in Drosophila [61]).

Given the high costs of collecting data on organisms in the �eld and lab, the need to attenuate

these biases becomes more and more paramount. At the present time, however, no systematic

methodology exists for identifying these biases and key species, thus providing an impetus to

develop such methods. Furthermore, by using phylogenetic comparative methods (like the method

proposed in this thesis), one can quickly identify species that con�ict with the general pattern of

a feature or identify comparative patterns that previously lay hidden. Indeed, several exceptions

have been found using this approach (e.g., Birkhead [5] revealed that some male birds su�ered

more from extra-pair copulations by male nonmates than others).

1.2 Introductory Example

One possible application could be envisioned by inferring the function of sleep. �Sleep is an

evolutionary puzzle. Unlike . . . , the functional bene�ts of sleep are not immediately apparent,

and the costs of sleep appear to be substantial�[53]. In the last few years, bewildering gaps in

our understanding of primate sleep have been uncovered. In a recent compilation of primate sleep

data, for example, basic sleep patterns among the apes have been collected only in humans and

chimpanzees [50]2. Deciding data are thus missing for bonobos, gorillas, orangutans and gibbons.

Only 20 species of primates have any data on total sleep times, and these data are heavily skewed

towards terrestrial species: Only 18% of the primates are terrestrial, but 67% of the data come from

terrestrial species [55]. Unfortunately, terrestriality has emerged only few times and this creates

clusters of closely related species with sleep data. As visualized in Figure 1.1, this suggests that

comparative studies of primate sleep may be systematically biased towards particular lineages. A

reason for that could be the fact that the study of sleep is easier in terrestrial primates than in

arboreal ones.

Data on sleep cycles (e.g., the phasing of REM-NREM sleep) are available for only eight primate

2http://www.bu.edu/phylogeny/about/index.html
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Chapter 1 Introduction

Figure 1.1: Example primate phylogenies. On the left side, a parsimony reconstructed phylogeny is
shown with species where sleep data are available. On the right side, a more general primate phylogeny
is shown [4]. All species from the left are highlighted with a red arrow, indicating that sleep data are

available.

species [55], which is another illustration of a potentially biased data collection. These two exam-

ples highlight the importance of collecting sleep data on more primate species to test hypotheses

for the evolution of this biological important trait. Given the costs of collecting such data, we

need a way to systematically evaluate the species to study.

1.3 Subject of this Thesis

In summary, the idea for this thesis springs from the realization that for many of the most inter-

esting questions in biology - such as the evolution and function of sleep - a variety of hypotheses

(e.g., `Predation risk in�uences total sleep duration.' or `Sleep intensity increases with a decreased

total sleep time.') have been proposed [15, 39, 40, 9], but exceptionally few species have been

studied to test these hypotheses [50].

To test these hypotheses comparatively, we need to study more species - but which species should

be studied? Indeed, this is the fundamental question of this thesis. By taking the hypotheses,

comparative data relevant to the hypotheses, and a speci�c phylogeny, we can identify which

species would provide the most compelling tests of hypotheses. We have developed a methodology

that can directly address this decisive question. Using this method of phylogenetic targeting, gaps

in our knowledge of particular lineages as well as in relation to particular biological traits of interest

can be revealed. This is particularly important, because studying species is both expensive and

3



Chapter 1 Introduction

time-consuming. It is therefore extremely useful to select the species which should be studied

given certain hypotheses, rather than collecting data by chance and hoping that it will be useful.

More generally, phylogenetic targeting can help guide the increase in bioinformatics data into the

most pro�table directions.

Inspired by this phylogenetic targeting idea, the main goal for this project is to provide a new

way to develop a systematic, quantitative and phylogenetic approach to identifying where future

research e�ort should be placed. We also developed a computer program, PhyloTargeting, which

implements this idea. It is web-based and freely available3 and thus accessible for everyone with

an internet connection. It provides a user-friendly interface, a variety of options to analyze the

dataset, graphical visualizations of the results and many more powerful features that are helpful

for probing a particular evolutionary question.

After collecting data for high priority species with the help of that new approach and computer

program, the information can be made open to the public research community for further inves-

tigation. Thus, it is also a tool to get new insights into the process of evolution and into some of

the most fundamental questions in organismal biology.

1.4 Organization of this Thesis

This thesis systematically describes the new methodology and the developed computer program in

detail. The remainder of this document is organized as follows: After the introduction, Chapter 2

explains important background knowledge and principles that are crucial for understanding the

idea of the approach. Chapter 3 discusses related work. Then, in Chapter 4, a detailed description

of the PhyloTargeting approach is presented. The developed algorithms are shown, as well as the

methodology itself. Chapter 5 discusses e�ciency issues and analyzes the program and its data

structures. Chapter 6 applies a real-world dataset to the PhyloTargeting framework, to highlight

the practical usefulness of the approach. For this, a sleep dataset on primates will be used to test

hypotheses about the evolution of sleep. Chapter 7 discusses general issues and summarizes the

ideas and the implementation. The Appendices provide supplementary material, which is helpful

for the interested reader. Finally, references of this thesis are listed.

3http://www.bioinf.uni-leipzig.de/~achristian/
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Chapter 2

Background

�The comparative approach is not new. Indeed, it was Darwin's favoured technique. . . . In short,

comparative studies have taught us most of what we know about adaptation.�

Harvey and Pagel (1991), page v

2.1 Comparative Biology

2.1.1 Testing Hypotheses

One of the most frequent questions in comparative biology is whether di�erent features are cor-

related, thus suggesting that there exists an evolutionary process linking these features [33]. This

can be due to other aspects of the organisms or their phylogeny. Numerous examples are possible

using the example of sleep: Is sleep duration correlated with body mass? Does sleep intensity

decrease in species that experience greater risk of predation? Does REM sleep duration covary

with memory needs? Such questions of trait correlations usually address an underlying adaptive

hypothesis. Numerous methods have been proposed to address such correlation issues in a compar-

ative context, and the assumptions they require di�er greatly. For example, some of the methods

assume a speci�c model of evolution (e.g., Brownian motion in the phylogenetically independent

contrast method [18]), some assume that the phylogenetic topology as well as the branch lengths

are known and error-free (e.g., also phylogenetically independent contrasts), some assume that

within-species variation is negligible (e.g., Grafen's regression [26]) and other methods require

that ancestral states have been accurately reconstructed [43]. These assumptions usually increase

the power of the method, but they have a signi�cant drawback: If the assumptions are unrealistic

or too strong, they may limit the applicability of the method. If the assumptions are not met and

the method is nevertheless applied, this may lead to erroneous results [44].

We want to highlight and describe two particular methods in the following sections, because they

are decisive for the PhyloTargeting program. Although they are, in their original sense, not suited

to determine key species, we will use a combination of these methods in this thesis.

5



Chapter 2 Background

2.1.2 The Pairwise Comparison Method

The idea of pairwise comparisons is not a new one- its roots can be traced back at least as far

as Salisbury 1942 [73], and even Darwin used species pairs for analysis. Although newer methods

are available that make better use of the variation, the method of pairwise comparisons is actively

used in organismal biology ([18, p.13]; [52]; [64]; see also [70] for a closely related approach).

Frequently, the method is used to test correlated trait evolution.

Figure 2.1: In this hypothetical example, a sample phylogeny is shown, consisting of seven species. By
using sister species pairs, three pairwise comparisons (highlighted in red) can be selected.

This method uses species pairs and their contrasts (which represent di�erences between the trait

values) on a phylogeny to test hypotheses based on di�erences in traits within each pair. Di�erent

species pairs must be phylogenetically separate, and thus they can be seen as independent data

points that can then be applied to statistical analysis. Many researchers recognized that compar-

isons of closely related species are particularly valuable, but what is the reason for that? In most

cases, other factors may in�uence the trait of interest (confounding variables). If these factors

are shared among relatives, which is assumed to be true, then the use of these congeneric pairs

provides a way of holding these factors constant within each comparison. That enables to test the

role of another factor that exhibits less signal, and has diverged between close relatives. Thus,

fewer confounding variables can be expected to in�uence the result.

In practice, one identi�es congeneric species pairs on the phylogeny, and calculates their di�erence.

Each such contrast then represents an independent data point. As Felsenstein [19] noted, on a

dichotomous tree, the maximum number of possible contrasts is equal to the number of species

in the tree, divided by two, rounded down to the nearest whole number (the rounding is due to

the fact that for phylogenies with an odd number of species, one species is left and cannot be

paired).

The method is attractive for its reliance on relatively few assumptions, and the advantages com-

pared to other comparative methods such as phylogenetically independent contrasts (see next

section) are as follows:

- There is no requirement to reconstruct ancestral states, only the data from the tips of the

tree are used.

6



Chapter 2 Background

- It works well with any kind of data: continuous variables, and especially discrete ones.

- It compares closely related species instead of distantly related ones and thus helps to control

for confounding variables.

- It is more robust to phylogenetic uncertainty: Errors arising from phylogenetic uncertainty

are minimized because sister species are favored over more distant relatives [52]. These

pairs share only a small number of branches, and thus, uncertainty is decreasing, because

potentially erroneous reconstructed nodes near the root of the tree are not used.

- It does not rely on explicit evolutionary models.

- Pairs of species can be targeted that o�er the most power to test hypotheses (see also

Chapter 4).

- It is also very useful when equivalent data cannot be collected across the tree (see also

Chapter 4)

However, there are some important drawbacks that are crucial to be mentioned. They will be

intensively discussed in Chapter 7.

2.1.3 Phylogenetically Independent Contrasts

In 1985, Felsenstein published the �rst phylogenetic statistical method for the analysis of com-

parative data [18] that has no assumptions on either the topology or branch lengths. It can be

seen as a breakthrough contribution, because between 1985 and 2002, it has been cited 1462 times

[10]. His methodology, often referred to as phylogenetically independent contrasts, can be used to

test hypotheses in a comparative context. By taking the species phylogeny into account, it guar-

antees statistical independence among the data points. It can be seen as a generalization of the

presented pairwise comparisons method, because it considers the divergences that have occurred

at each bifurcation (that is, also ancestors can be compared) in the phylogenetic tree, instead

of using only species divergences. Thus, every branch of the tree is used and more phylogenetic

information can be incorporated in the analysis (see Figure 2.2). In practice, if we are given a

tree with n species, congeneric pairs of species are contrasted. The direction of subtraction is

arbitrary. Usually, however, the main hypothesis is commonly forced to be positive [67, 51]. After

pruning these pairs from the tree, the ancestral nodes are estimated using a weighted mean of the

values from the descendants. The process starts again, and thus further contrasts are computed

involving the values estimated for internal nodes. All contrasts are divided by the square root of

the sum of their branch lengths (standard deviation) to give them a common variance as required

by most statistical tests. Finally, n−1 contrasts are computed that can then be used for regression

or correlation analysis. As Garland [23] noted, statistical tests must be computed through the

origin.

The method has some important assumptions:

- The phylogenetic topology is known and assumed to be correct.
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Chapter 2 Background

Figure 2.2: The same phylogeny as shown in Figure 2.1, but with the phylogenetically independent
contrasts method. Instead of using only sister species, all branches of phylogeny are used (six in total,

indicated by di�erent colors). See text for details.

- Branch lengths are assumed to be in unit of expected character change.

- Within-species variation does not exist or is negligible.

- The process of evolution is assumed to be a Brownian motion process.

Despite these drawbacks, it has proven robust over a number of studies and simulations, and it is

the most commonly used method for testing adaptive hypotheses in organismal biology (see [10]

for a detailed list). Until today, there have been numerous adaptations of this method (e.g., see

[25] for an overview). Some ideas of these methods will also be used in our approach as described

in later chapters.

2.2 Mesquite and the NEXUS File Format

�Mesquite is software for evolutionary biology, designed to help biologists analyze comparative

data about organisms. Its emphasis is on phylogenetic analysis, but some of its modules concern

population genetics, while others do non-phylogenetic multivariate analysis�1. Mesquite [45] in-

cludes a variety of analyses, including tests for correlation and character evolution, ancestral states

reconstruction using parsimony and maximum likelihood, and tests of speciation and extinction

rates.

1http://mesquiteproject.org/mesquite/mesquite.html
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Figure 2.3: A sample screenshot from Mesquite. In the front, a character matrix window is shown; in
the back, a part of the phylogeny is illustrated.

It is appropriate for comparative analysis, and supports di�erent comparative methods such as

Felsenstein's phylogenetically independent contrasts or the pairwise comparisons method as de-

scribed by [44] (see Chapter 3).

Mesquite is widely used, and it works with the NEXUS format, which is a ��le format designed

to house systematic data� [42]. The primary design feature is modularity. It is composed of a

number of di�erent blocks (e.g. TAXA or TREES), and the four main principles are as follows2:

1. Expandability: New blocks or statements within existing blocks can be added with mini-

mum disruption. Because of the structured design, programs are able to recognize relevant

elements and disregard irrelevant ones. New elements are thus just ignored if they are not

supported.

2. Inclusivity: The �le can contain all the information a researcher is interested in, including

character data, morphological data, assumptions, trees, and so forth.

3. Portability: The �le format can be used on every operating system, since only simple text

�les are used. Moreover, the insensitivity to speci�c newline characters allow the use of

di�erent operating systems.

4. Processibility: Programs which are able to read NEXUS �les can pick up the information

they desire, and skip commands or blocks they do not need or support.

2taken from the NEXUS paper
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The NEXUS format has many functions. Currently, no program implements all of the features

NEXUS provides.

2.3 Applied Informatics

PHP

In this section we give a brief introduction of the programming language PHP (a recursive ini-

tialism for PHP: Hypertext Preprocessor). The following citation clearly describes the nature of

PHP: �PHP is a widely-used general-purpose scripting language that is especially suited for Web

development and can be embedded into HTML�3. Such a language should have criteria as follows

to be usable:

1. Fast prototyping and implementation

2. Support for modern programming paradigms

3. Scalability and performance

4. Interoperability

5. Extensibility

Especially the �rst criterion has always been a strength of PHP, and with version 5 at latest,

�PHP has fully embraced the rest of these ideas as well�[74, p. 2]. It provides an immense number

of extensions (such as PDF creation, database access, and remote services), and some of these

extensions and external libraries are used in the PhyloTargeting program. Additionally, powerful

features for rapid web development are available, and it o�ers enhanced security, although security

is more a matter of the programmer than the programming language itself. Moreover, it provides

a session management that allows for storing of data between pages. Together with possibilities

for fast and easy serialization, it also o�ers a way to handle and save the state of an application.

Phylogenetic trees and their computer representation

Phylogenetic trees can be represented in a computer as a special rooted, acyclic, directed graph.

We now introduce these terms to de�ne the concept of a tree. Moreover, these terms are important

for other chapters.

De�nition (directed graph): A directed graph G is a pair (V, E), where V is a �nite set and E

is a relation on V. The elements of V are called nodes, and the elements of E are called edges.

De�nition (predecessor, successor): u is a predecessor of v, and v is successor of u in G if

(u, v) is an edge of G.

3http://www.php.net/
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De�nition (path): A path in G is a sequence v1, . . . , vn of nodes such that vi is a successor of

vi−1 for i = 2, . . . , n. The path is a cycle if n > 1 and vn = v1.

De�nition (acyclic): A directed graph is said to be acyclic if it contains no cycles.

De�nition (rooted graph): An acyclic graph is said to be rooted if exactly one of its nodes,

called the root, has no predecessors.

De�nition (tree): A rooted, acyclic, directed graph is called a tree if each of its nodes, excluding

the root, has exactly one predecessor and none or at least two successors.

Thus, phylogenetic trees can be represented in the computer as a set of nodes and a set of edges.

In the basic implementation, each node maintains a list of references to all incident edges, and

each edge maintains a reference to its source node and to its target node as well as its length. Of

course, additional attributes can be speci�ed.

De�nition (last common ancestor): The last common ancestor is de�ned between two nodes

v and w as the lowest node in a tree T that has both v and w as descendants (where we allow a

node to be a descendant of itself).

In other words, the last common ancestor is the shared ancestor of v and w that is located farthest

from the root.

Figure 2.4: A sample graph that is no tree. It summarizes the basic terms and every red element presents
a violation of the above stated de�nitions: The cycle 1 − 2 − 4 − 1 can be removed by deleting edge a

(marked in red at the left). One node (2) has only one successor, which can be changed by introducing a
new node as successor or creating an edge from node 2 to node 10. Furthermore, node 8 and node 10 do
not have exactly one predecessor: Node 8 has two, node 10 zero. This can be solved by deleting edge b

(marked in red) and adding an edge from node 6 to node 10.

Tree properties

Trees are ideally dichotomous. In reality, however, phylogenetic trees often contain some uncer-

tainty, leading to polytomous trees. As we will later see, these trees have to be treated special in
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some of the developed algorithms. The two kinds of polytomies are as follows:

- Hard polytomy: The hypothesis that a common ancestral population split through clado-

genesis into multiple lineages, e.g. in the Cambrian explosion. Thus, they may indicate true

simultaneous speciation events.

- Soft polytomy: This re�ects uncertainty in which resolved pattern is the best hypothesis

and the more common intended meaning of a polytomy. Thus, one is not really expect-

ing that the same ancestor gave rise to all daughter taxa, but lack of knowledge prevents

representation of a more detailed speciation process.

Figure 2.5: Hard and soft polytomies. On the left side, a soft polytomy is shown, on the right, a hard
polytomy. See also text for details.
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Related Work

�An approximate answer to the right problem is worth a good deal more than an exact answer to

an approximate problem.�

John Tukey (1915 - 2000)

3.1 Overview

To the best of our knowledge, the issue of systematically targeting key species has not yet been

systematically addressed in the literature. Several individuals did recognize the necessity of iden-

tifying target species [79, p. 6] [78, p. 15], but only guidelines for this selection process have been

given. Moreover, these guidelines are speci�c to the question of interest.

In this thesis, a variant of the presented method of pairwise comparisons is used. It has been well

studied and is frequently used in the scienti�c community; however, almost always, the method

has been chosen to address evolutionary hypotheses, instead of the issue we addressed above.

Therefore, these cases cannot be considered as similar approaches, although they also use this

methodology.

3.2 The Approach of Maddison

Surprisingly, one approach is worth to be mentioned. Maddison presented a methodology for

choosing pairs using the pairwise comparisons method on a phylogeny [44] (we will neglect further

citation of this paper throughout this chapter). Even though he did not directly address the

question of identifying key species, he formulated a similar question: Each pair should satisfy a

criterion of relevance in a way that �it should represent a comparison relevant for the question of

interest�. Although his idea is more theoretically based, it can be seen as a preliminary version

of identifying key species, because he noticed that not each pair can contribute to or against

hypotheses. The necessity to �nd compelling pairs in the pairwise comparisons approach has been

noticed even before: For example, Read and Nee [70] noticed that pairs contribute only for or
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against a hypothesis of association if they di�er in at least one character. However, to the best of

our knowledge, no systematic and quantitative approach that addresses this particular question

exists.

But what criteria should be used to choose a particular pairing (see also Figure 3.1)? In the

case of continuous characters, every pairing could be useful, because it is likely that the di�erence

between two species di�ers from zero. For two discrete characters, however, Maddison considers

three di�erent cases, which can be discriminated in the number of characters that di�er between

the species of a pair (see the Maddison paper for more details):

- No regard to the states of the characters: All possible pairings1 are considered, and the

pairing that maximizes the number of pairs is chosen.

- Pairs that contrast in one binary character: Only pairs are chosen that contrast in one binary

character.

- Pairs that contrast in two binary characters: Only pairs are chosen that contrast in all two

binary characters.

After generating all possible pairings that satisfy the condition stated above (using dynamic pro-

gramming algorithms), statistical tests are applied for each such pairing and a table presents the

range of signi�cance values. Thus, dependence on arbitrary choices of the pairings is eliminated

through generation of all acceptable pairings and their signi�cance. This methodology has been

implemented in Mesquite, and an example screenshot is given in Figure 3.1.

Figure 3.1: Sample output in Mesquite: An analysis of pairwise comparisons automatically chosen by
the algorithm of Maddison (2000).Two di�erent pairings are shown, and only pairs that di�er in one trait
are considered. The left one is described in more detail. However, the same principle applies for the
right one. There are 144 pairings of terminal taxa with 6 pairs contrasting the independent (categorical)
variable. The �rst pairing (#1) is shown: 1 pair is positive, 1 is negative and 4 are neutral (not signi�cant

with p=0.75). Among all 144 pairings, none are signi�cant (ranging from 0.125 to 0.75).

1see the next chapter for a de�nition of a pairing
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However, this approach has some signi�cant drawbacks compared to the goal we want to address:

- It allows only discrete traits.

- Only one main hypothesis (called independent) and one alternative hypothesis (called de-

pendent) are supported.

- Neither additional information about the calculated trait di�erences for each pair is provided,

nor is a score calculated that represents how informative this particular pair is.

- Only three di�erent methods for calculating these pairings are available, and they are too

speci�c.

- It is not clearly arranged, especially with large phylogenies.

- Only automatically calculated pairings are shown, the investigator cannot manually select

particular pairs.

Thus, we are limited in what we can investigate in the pairings and this approach is not capable of

identifying where future research e�ort should be placed. However, the basic idea is comparable,

and we will extend it in the next chapter.
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Phylogenetic Targeting

�The mere formulation of a problem is far more essential than its solution, which may be merely

a matter of mathematical or experimental skills. To raise new questions, new possibilities, to

regard old problems from a new angle requires creative imagination and marks real advances in

science.�

Albert Einstein (1879 - 1955)

The purpose of this chapter is twofold: First, to show the biological methodology to accomplish the

task of identifying key species, and second to present the informatics approach in more detail.

4.1 Modeling

4.1.1 Programming Language

The �rst crucial decision was to choose among numerous programming languages. Since a web

application should be developed and accessible from the internet, a number of programming lan-

guages can be excluded from the outset. Another requirement is that it can be downloaded and

used by as many users as possible. This constraint implies that a widely used, cross-platform,

modern, and easy to install programming language should be used. Only PHP1 and Perl2 remain

as plausible options after considering these requirements. Perl, the dominant programming lan-

guage in bioinformatics, and PHP, one of the most widely used web programming languages, are

both appropriate for the developed application. PHP is extremely easy to install; in general, only

a local web server, e.g. Apache, is required. Precompiled packages, such as XAMPP / LAMPP /

MAMP (depending on the operating system), exist which help to simplify the installation process

(see Appendix A). Additionally, PHP is better suited for web applications. Therefore, we chose

PHP.

1http://www.php.net/
2http://www.perl.com/
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4.1.2 Data Structures

It is apparent what data structures a phylogenetic related program such as PhyloTargeting should

use. Because most of the calculation is based on an underlying phylogenetic tree (e.g., traversing,

looking for nodes, selecting subtrees, allocating branches), it is appropriate and e�cient to use a

specialized tree data structure. The way it is implemented is as described in Chapter 2, however,

a new type of object must be embedded to represent the complex interaction which is needed in

the application: pairwise comparisons, which are similar to edges (more details can be found in

later sections). Indeed, they can be seen as connections between leaves, representing a comparison

between these two species. They do not have an explicit length or weight like regular edges, but

they do have a score, which is likewise in our cases. Thus, two kinds of edges are used: one classic

type that represents the connection between the nodes and the other kind representing connections

between leaves of the tree, the pairwise comparisons. This is comparable to a visual representation

of RNA secondary structures, the secondary structure graphs, because they also incorporate two

di�erent kinds of edges.

4.1.3 Class Overview

PhyloTargeting uses the object-oriented paradigm, which provides a clear modular structure for

programs. Therefore, it is appropriate for de�ning abstract data types. Implementation details

are hidden, and each unit has an acutely de�ned interface.

To summarize the discussed aspects, a tree object consists of node, edge, and pairwise comparison

objects. The following UML diagram shows in more detail how these objects are represented

internally and how they interact.
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Figure 4.1: UML Diagram of the main classes that are used in the application. The diagram is simpli�ed,
because only important and meaningful functions are listed (that is, especially all set and get methods
are excluded), and no details for functions (e.g., return type, parameters) are provided for simplicity.
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4.1.4 Work�ow Overview

Although the terminology and the interaction among di�erent processes have not been introduced

yet, a typical work�ow is presented that helps to develop a basic understanding. Such a work�ow

would be as follows, and the most important of these features are also shown in Figure 4.2 and

described throughout this chapter:

- The investigator uploads a NEXUS data �le containing multiple species, a corresponding

tree in the NEWICK format and at least two traits representing the hypotheses of interest.

- Then, a setting must be speci�ed on which the calculation is based, which consists of the

following elements:

- A selection of the species that should be included in the analysis

- A phylogenetic tree on which the calculations are based

- A main hypothesis that re�ects the question of interest

- Optionally, one or more alternative hypotheses that re�ect potentially confounding

variables or alternative explanations that the user might wish to investigate

- For each alternative hypothesis (if speci�ed), a scoring mechanism must be declared

that speci�es how the maximum score is assigned, speci�cally with regard to whether

change in this variable is minimized or maximized (and the direction of maximization).

- An optional target variable that screens all pairwise comparisons for the most informa-

tive ones; typically this will include details on the species that have been studied with

respect to some dependent data (e.g., EEG data on sleep).

- With this information, the calculation of all pairwise comparisons and their information

content relative to the speci�ed hypotheses is possible. This information content represents

how compelling these species pairs are for further data collection.

- After calculating all of the mandatory elements, the following options are possible:

- A summary table can be examined in step 3. This table lists the most important

features, and is a good starting point for further investigation.

- A pairing can be speci�ed either manually using the contrast selection feature, or au-

tomatically using the maximal pairing algorithm.

- Particular species or the pairing itself can be examined separately using the options

from the analysis step.

- Di�erent graphical visualizations and export options are provided for further investigation

(e.g., the distribution of all pairs in the tree, or export to common �le formats, such as PDF

or comma-separated text �les)
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- The application state can be saved to continuing the analysis at a later date if desired.

Figure 4.2: Typical work�ow in the PhyloTargeting application.

4.2 Initialization

The �rst step is a proper initialization, which includes loading an appropriate data �le and spec-

ifying a set of settings that contains all mandatory information needed to do the calculations.

These initial steps are described brie�y in this section.

4.2.1 Loading Data Files

The investigator must either upload a valid data �le to the program, or he may use the provided

example �le. Here, we brie�y describe which data �les can be used; further details, including a

screenshot of an example �le, are provided in Appendix B. The data �le must be in the NEXUS

format, and NEXUS �les from other programs may have to be modi�ed. For example, this can be

achieved by importing and saving them in the program Mesquite, because Mesquite data �les are

known to have full compatibility. If continuous data are involved in the analysis, Mesquite will

also be a helpful tool to enter the data into the appropriate format.

If the loading was not successful due to errors in the data �le, a detailed description of the nature

of the error is provided, and moving on to the other steps is prohibited.

4.2.2 Settings

After successfully loading the data �le, the investigator is able to move on to step 2. Here, some

settings have to be made which are needed for the calculation. These settings are as follows, and

detailed explanations are provided in the next sections:
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- The investigator chooses either all or an arbitrary subset of species that should be considered

in the calculation. All excluded species will also be excluded completely in the analysis. More

details are provided in section 4.3.3.

- A tree must be selected on which all information are based. PhyloTargeting automatically

extracts all tree de�nitions from the data �le, and thus more than one tree can be selected.

Indeed, di�erent trees can yield to di�erent results, and for this reason, the underlying

phylogenetic tree is a very important component of the whole analysis.

- Hypotheses and scoring mechanisms must be chosen. This re�ects the underlying question

that the investigator wants to address and is explained in full detail in section 4.3.5.

- An optional target variable and a constraint can be speci�ed. This feature is explained in

section 4.3.6.

- The investigator can choose if pairs should be standardized or not (see also section 4.3.5).

After the user speci�es these settings, the program does some basic calculations that are called

whenever new or modi�ed settings are applied to the program. These calculations include the

following:

- Species that had to be excluded due to missing information

- The number of pairwise comparisons that are informative

After con�rmation by the investigator, the calculation starts. A progress bar [8] indicates the

amount of progress.

4.3 Basic Methodology and Algorithms

4.3.1 Overview and Hypotheses

Comparative tests can be roughly divided into two groups: First, broad-scale approaches (e.g.,

[71]), which test hypotheses across many species, and second, focused comparisons consisting of

only few species [77], which allow the user to tailor the test to the species of interest. Both

approaches have advantages; for example, broad-scale comparisons provide a means to assess the

generality of a pattern, while focused comparisons provide a means to collect more detailed data

on several species. However, both methods also have disadvantages. In the broad-scale variant,

a major constraint is that data must be collected for as many species as possible, and the data

must be comparable across species. Unfortunately often, this is a rather unrealistic assumption,

because data collection is an expensive and time-consuming task and methods must be tailored

to the species being studied. Usually, data are available for only a fraction of the species in a

clade, and one cannot get the desired data for all species that have not been studied. The main

drawback of the pairwise comparison approach is that it is di�cult to test alternative hypotheses

due to an insu�cient number of contrasts.
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In summary, the broad-scale and pairwise approaches can be seen as two extremes, and an approach

that combines the advantages of both is needed. That is, we need to select a set of species that

o�er the most power to test hypotheses, and all of them should be phylogenetically separate.

Usually, two hypotheses are tested against one another: One main hypothesis and one alternative

hypothesis. Hypotheses can be mutually exclusive, which means that the occurrence of any one of

them automatically implies the non-occurrence of the remaining one, so that only one hypothesis

can be true. However, hypotheses can also be non-mutually exclusive (sometimes also called

compatible), which means that two or more of explanations for some pattern are possible. The

occurrence of one does not prevent the occurrence of the others in all cases. Sometimes also more

than two hypotheses have to be tested, either to control for potentially confounding variables, or

because there are truly multiple hypotheses that need to be considered. All discussed scenarios

can be applied to the PhyloTargeting framework, and thus the program o�ers great �exibility,

depending on the questions at hand.

A main aim for this thesis is to develop a hypotheses-driven approach that is able to identify

comparisons that o�er the strongest tests of one or more hypotheses. But how can they be

identi�ed? We will present some main ideas using a sleep dataset to test hypotheses related to

the function and evolution of sleep as an introductory example3. The goal of this example is to

develop a basic understanding how one can address this question.

Figure 4.3: Example phylogeny consisting of six species and two traits that can be screened using the
PhyloTargeting approach. Species for which no data are available are indicated with an ellipse. Among
all possible pairwise comparisons, the one between species s1 and s3 has the most power, because albeit
both have a similar body mass, the di�erence in the relative brain mass is big. See also text for details.

After collecting data for the species of interest and indication of species where data are not

available, one can construct variables that re�ect the hypotheses on which the calculations are

based. In this example, we test the hypothesis that the major function of sleep is related to the

brain. Speci�cally, we constructed a variable that re�ects the residuals from the phylogenetically-

adjusted regression line between brain and body mass, which we call relative brain mass (see

also Appendix C). Relative brain mass re�ects brain size after controlling for body mass by using

measurements from the captive individual whose brain was measured. Yet we might also be

3These hypotheses are also used in Chapter 6.
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interested in body mass as an ecological variable, as this can in�uence predation risk, diet and

life history (all of which have been proposed to a�ect sleep times). We thus control for body

mass by including data on body mass in wild animals as one of the alternatives. Our goal is to

identify species have similar body mass, but big di�erences in relative brain size. To identify these

key species, we generate pairwise comparisons that enable us to test these hypotheses by initially

generating all possible pairwise combinations. We can now �nd species pairs that enable us to pit

the hypotheses against one another by scoring them in relation to the settings.

By applying this procedure, we can identify the species that can be compared to test predictions

(which usually are derived from a theory). Moreover, we can put them in competition against one

another to identify `high priority' species for future data collection. In the example above, species

from the highlighted pairwise comparison (s1 and s3 ) will be identi�ed as key species, because

they have the most power to test the hypotheses.

4.3.2 Pairwise Comparisons

Di�erent methods are imaginable for identifying these key species. As presented, the method of

pairwise comparisons is well-suited to apply to the question of the thesis. A major reason is that

some species are not directly comparable: For example, some cetaceans sleep with only 1
2 of their

brains, thus making it di�cult to compare the measurements of sleep to other mammals - one

would only want to compare cetaceans with other cetaceans. Or, an experiment based on cognitive

skills might be appropriate for only some of the species in the lineage; one would have to tailor

the experiment to di�erent species, and to only compare those species given the same experiment.

In the original method (assuming that the phylogeny has n distinct species), only sister species

form a pair, and thus a maximum of n
2 pairs, rounded down to the nearest whole integer, can be

formed. However, in this approach, we theoretically allow any pair of species, independent from

their phylogenetic position; in other words, we do not have to rely on sister species only. This

is indeed useful for our purposes, because pairs of non-sister species could be compelling enough

to test hypotheses (see also Figure 4.3). This cannot be ruled out and therefore, all possible

combinations have to be systematically generated initially. This methodology implements some

ideas of the Maddison [44] approach (see Chapter 3), however, it is far more general and eliminates

the main drawbacks of his implementation. Maddison proposed that �the algorithms presented here

can be considered only the beginning of a suite of alternative algorithms that could eventually be

derived�. Indeed, the presented methodology is actually both a derivation and also a generalization

that addresses a di�erent question by using similar methodologies. As we will see later, it contains

elements of the phylogenetically independent contrasts method as well, and can thus be seen as a

combination of both.

Generation of all pairwise comparisons The procedure that generates all possible pairwise

comparisons is trivial, and thus only a brief description is given. We parse the input �le, generate a

table consisting of all species including their trait values, and then loop over this table to engender

all possible pairwise comparisons. Each species can pair with each species, except with itself. This

yields the following equation for the maximal number of possible pairs:
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Npairs =
n(n− 1)

2
(4.1)

Each of them has to store some additional information for a variety of reasons, and the most

important ones are listed as follows:

- The two species that form the pair

- Information about its state

- Trait di�erences for all speci�ed traits

- Scores

- Phylogenetic information

The �rst bit of information is clear, and the third, fourth and �fth are discussed separately later.

However, we give some details about the second bit of information.

States of a pairwise comparison It is not su�cient to simply generate all pairwise compar-

isons, for the purpose of our approach, a way to declare di�erent states to a particular pairwise

comparison is also a necessity (e.g., this is mandatory for the visualization, see section 4.3.7 and

section 4.4.1). The following list explains and describes these states, and how they interact.

1. Active and passive pairwise comparisons

Active comparisons are simply pairwise comparisons that are included in the calculation,

and that ful�ll the following three conditions:

- Both species are in the list of the species that should be included.

- No missing values in either the main hypothesis or one of the speci�ed alternative

hypotheses are detected.

- If a target variable constraint is speci�ed, then this value must be valid according to

the speci�ed settings in step 2.

Therefore, passive ones are pairwise comparisons that violate at least one of these condi-

tions, and they are not included in any calculation unless new settings are submitted to the

program.

2. Di�erent states of an active comparison

The following states can be assigned to an active comparison:

- regular (this is the default state; a priori, all pairwise comparisons are in this state)

- selected (pairwise comparisons that are determined automatically by the maximal pair-

ing algorithm or pairwise comparisons that are selected manually using the contrast
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selection feature in step 3)

- phylogenetically non-separate (all pairwise comparisons that share at least one branch

with at least one selected pairwise comparison are automatically assigned to this state)

Whenever a pairwise comparison changes its state, this may a�ect the state of other pairwise

comparisons.

However, it has to be mentioned explicitly that these states are bounded to a speci�c settings as

speci�ed in step 2.

4.3.3 Missing Information and Screening Measures

In comparative biology, researchers often face the problem of incomplete data sets. Almost always,

data for a particular trait are available for only some species, and even in those information

about other traits can be partially missing. A fundamental question is how to handle pairwise

comparisons that contain missing information, an issue that will be discussed now. Furthermore,

screening measures are summarized.

Missing information Whenever an investigator speci�es a setting (hypotheses, a set of species,

scoring options, an optional target variable), the following procedure is applied: All possible

pairwise comparisons are generated initially and a function is called that determines which pairs

can be neglected. That is, all species that have missing information of any kind in one of the

traits re�ecting the hypotheses (either the main hypothesis or one of the alternative hypotheses)

are ignored, because unless the investigator changes the settings, those species or pairs of species

are uninformative. This is due to the fact they the power of such a pair cannot be determined if

trait values are missing. Other constraints will be discussed separately. However, the investigator

is informed if the application determines any kind of missing information.

If the investigator changes the settings, the procedure starts again. Thus, it is guaranteed that

every useful pair is considered whenever new settings are provided to the program. This measure

is done automatically and independently of the settings.

Screening Measures Mechanisms are needed that screen the pairwise comparison space for

informative and compelling pairings, because the number of possible pairwise comparisons grows

quadratically with the number of species and thus becomes large rapidly. The following selection

criteria summarize which species pairs are excluded, and this is also visualized in Figure 4.4:

- Pairs that have at least one species that is excluded by the user.

- Pairs that do not ful�ll the target variable constraint (see section 4.3.6).

- Pairs that contain any kind of missing information in relation to the hypotheses.

With these measures, the space of all pairwise comparisons can be greatly reduced, which is

mandatory and useful if large data sets are chosen. Hence, only informative pairs are considered

and displayed and non-informative pairs do not bias the analysis.

25



Chapter 4 Phylogenetic Targeting

Figure 4.4: Screening measures after generating all pairs. See text for details.

4.3.4 Phylogenetic Information

In order to calculate a score for each pair, we need to incorporate phylogenetic information.

Phylogenetic relatedness must be considered, since more closely related species will have genes or

traits in common through descent from common ancestors and are thus �not solely a product of

their current environment� [10, p. 54]. They are therefore likely to be more similar than they are

to more distant relatives. Hence, they allow investigators to make stronger inferences. From a

statistical point of view, they are needed to transform the comparative data into data that can

be applied to standard statistical analysis (e.g., regression analysis, ANOVA or chi-squared tests).

That is, it must not violate the assumption that the data points are independent. In this approach,

phylogenetic information needs to be incorporated because the evolutionary distance between the

pairs must be considered when calculating its pairwise score.

We next describe in detail how the implemented algorithms that determine the divergence times

and other phylogenetic characteristics work. In particular, we are interested in the last common

ancestor node of any pair. This is useful for determining the distance between pairs of species in

a tree, and this distance may a�ect the score.

Generating the phylogenetic tree The �rst phylogenetic-related algorithm is the generation

of a tree structure from a NEWICK tree representation. Algorithms for that parsing procedure

are publicly available4 and therefore, a description is neglected. From now on, we assume that we

have a tree-like data structure from the original NEWICK string.

Finding the last common ancestor node of two species We now present an algorithm as

proposed by Gus�eld [28, p. 194]. This algorithm reduces the last common ancestor problem to a

list problem. More speci�cally, it reduces the general problem to a problem of �nding the smallest

number in an interval of a �xed list of numbers (the range minima problem), and the two main

4e.g., see the Mesquite source code for a java version, or the BioPerl library (www.bioperl.org/)
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steps are as follows:

1. Preprocessing

Execute a depth-�rst traversal of the tree to label the nodes in depth-�rst order. However,

the only property of the numbering we need is that the number given to any node is smaller

than the number given to any of its proper descendants. We then simply build a multi-list

L of the nodes in the order they are visited.

2. Retrieval

For a pair of nodes x and y, �nd any occurrences of x and y in L (that is, �nd the �rst

position of either x and y, and their last position). This de�nes an interval I in L, and the

smallest number in this interval is the last common ancestor of x and y.

This procedure can be veri�ed as follows. For each last common ancestor retrieval (x and y,

respectively), two distinct cases can be distinguished [34, p. 21]:

1. One node (say x) is an ancestor of the other (y): All those nodes visited between x and y

are in the subtree of the ancestral node, and thus the depth-number assigned to x is minimal

in I.

2. Neither x nor y is an ancestor of the other: All those nodes visited between x and y are in

the subtree of last common ancestor (x, y), and the traversal must visit this ancestral node.

Thus, the minimum of I is the depth-number assigned to last common ancestor (x, y).

The complexity of the algorithm is as follows. Suppose one has a tree with n leaves. Then, in the

preprocessing, the time complexity is proportional to the number of vertices plus the number of

edges, thus O(|V | + |E|), which is in O(n). The multilist allocates O(n) entries, as well as the

depth-�rst traversal. Thus, space complexity is O(n). In the retrieval, O(n) time is needed to

determine the smallest number in an interval. This can be further reduced to a constant retrieval

time[2], however, it is not implemented in this application, because O(n) is also a acceptable

boundary.

Additional phylogenetic information After calculating the last common ancestor node for a

pair of species, the program retrieves information about branches and their length on the path

that connects both species. This is done by using the following procedure, and is repeated for

each pair of species:

1. For both of the two species nodes, traverse the tree from the tip to the last common ancestor

node, and sum up the branch lengths; also count the number of branches that are included

in this summation. Additionally, save the IDs of all visited edges and store them in the

proper PairwiseComparison object.

2. The divergence time since the species split up is then just the sum of the branch lengths

from all edges that are stored in this object.

This phylogenetic information is su�cient for both providing additional information about a pair-
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wise comparison and for calculating the scores. In the next section, we provide more information

on how this phylogenetic information is incorporated into the score calculation mechanisms.

4.3.5 Score Calculation

One problem that we face is that we need to de�ne a way to evaluate the power of a pairwise

comparison. That is, we want to systematically target pairwise comparisons that o�er the most

power to test hypotheses. However, a few issues can arise:

- The traits of interest have a very heterogeneous range. In general, continuous variables are

more scattered and have therefore a larger range; they can also di�er greatly in their range.

In contrast, discrete variables have only a �nite number of states. Usually, they have only

two states (0 and 1) and are thus binary. But, nevertheless, all traits of interest should be

weighted equal, so a transformation is needed.

- We need di�erent scoring mechanisms for di�erent kinds of evolutionary hypotheses.

- We have to de�ne a score that comprises all of the trait information into a single value,

representing how much power a speci�c pairwise comparison has.

The issue of the greatly heterogeneous variable ranges refers to all traits. It can thus be treated

the same by �nding a transformation that recodes the ranges to a common interval. We apply a

linear scaling transform, because it is well-suited for this purpose and has the following properties

[38, p. 4]:

- It introduces no distortion to the variable distribution.

- It has a one-to-one relationship between the original and normalized values.

- The variable range is always between 0 and 1 after the transform, independent of the original

range.

In the application, the transform is done as follows. For each trait we do the following:

- Determine the minimum (min) and maximum (max) value of the variable / trait

- Use the following formula or a deviation of it to do the recoding:

� Variant 1

y =
x−min

max−min
(4.2)

� Variant 2

y =
x−max

min−max
(4.3)
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- store the transformed value in an additional column (adjusted score Sadj)

With this procedure and the introduction of adjusted scores for each trait, they all have exactly

the same range [0, 1] and are thus homogeneous. This is a good starting point to develop a

sophisticated scoring system.

In the following, a detailed overview of the scoring system for di�erent hypotheses is given. How-

ever, we describe the main hypothesis and alternative hypotheses scoring mechanism separately.

Scoring mechanisms for the main hypothesis

The scoring mechanism of the main hypothesis is straightforward: The bigger the di�erence, the

higher the score. This is due to the fact that we are always interested in big di�erences in the

main hypothesis, because this re�ects evolutionary change. In detail, we apply the following

procedure:

1. We calculate the di�erence between the two species.

2. If the di�erence is negative, we do a sign reversal for all traits (force the main hypothesis to

be positive and guarantee the same direction of change for all pairwise comparisons). The

reasoning for that is as follows: First, one wants to achieve consistency with other programs,

such as CAIC [67] and PDAP-Mesquite [51]. Another argument concerns helping to make

sense of the other trait di�erences and their directions. By making the main hypothesis

always positive, it becomes possible to quickly see if other traits are consistently positively

or negatively correlated with the trait in the main hypothesis, e.g. by simply sorting the

columns for those traits and looking for a preponderance of positive or negative values.

3. We determine the maximum value in all considered pairs; the minimum value is always set

to 0. This is desirable, because otherwise, non-zero values will be transformed to 0 after the

linear transform, which would be confusing and unreasonable.

4. We apply the linear scaling transform as described above (using variant 1) and store this

transformed value as the adjusted score for the main hypothesis.

Scoring mechanism for the alternative hypotheses

To enable the testing of di�erent kinds of hypotheses (e.g., mutually exclusive and non-mutually

exclusive), three distinct scoring mechanisms can be speci�ed for each alternative hypothesis. For

all these mechanism, the direction of change always refers to the direction of change in the main

hypothesis. The three distinct scoring options are as follows, and they are also visualized in Fig-

ure 4.5:

Option 1: No change

Pairwise comparisons that make the change as small as possible are scored higher, whereas pairwise

comparisons with big di�erences are scored lower. The variable range after applying this procedure

is again between 0 and 1. It should therefore be applied to non-mutually exclusive hypotheses
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when the e�ect of a potentially confounding variable should be included in the calculation. In

practice, it works as follows:

1. The program determines the absolute values of the di�erences.

2. The program determines the maximum value; the minimum value is always set to 0.

3. The program applies the linear scaling transform as described above (using variant 2) and

store this transformed value as the adjusted score for the particular alternative hypothesis.

Option 2: A lot of change in the opposite direction

Pairwise comparisons with big di�erences in the opposite direction as the di�erence in the main

hypothesis are scored positively, whereas di�erences in the same direction are scored negatively.

The variable range after applying this procedure is now between -1 and 1. This scoring scheme is

useful for hypotheses that are mutually exclusive, but might be problematic when they are not:

The positive e�ects of one variable and the negative e�ects of the other might `wash out' any

e�ect. In practice, it works as follows:

1. The program splits the trait array in two parts, one part contains only all non-negative

values, the other part all negative ones.

2. In each part, the program determines the minimum and maximum values separately. In the

array that contains all negative values, the maximum is always set to 0, whereas that is the

case with the minimum in the array that contains all non-negative values.

3. The program applies the linear scaling transform as described above (using variant 1) on

both arrays separately and merge the arrays back together.

4. The program applies a sign reversal for the array (because changes in the opposite direction

should receive a positive score, and changes in the same direction should receive a negative

score).

5. The program stores the array as the adjusted score for this hypothesis.

Option 3: A lot of change in the same direction

Pairwise comparisons with big di�erences in the same direction as the di�erence in the main

hypothesis are scored positively, whereas di�erences in the opposite direction are scored negatively.

The variable range after applying this procedure is again between -1 and 1. This scoring scheme is

the exact opposite of the one stated above, and it is also useful for mutually exclusive hypotheses.

However, in this case, when positive increases in two independent variables result in di�erent e�ects

for the dependent variable, we have to score one e�ect higher. For example, if an increase in the

independent variable reduces the dependent variable in one pairwise comparison, but increase in

the independent variable also increases the dependent variable in another pairwise comparison,

one might want to score di�erences in the same direction more highly.

In practice, it works exactly as option 2 with the only exception that the programs does not apply

a sign reversal after the linear scaling transform.

Summary
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Figure 4.5: Overview of all scoring schemes for alternative hypotheses with a concrete example: An
array with trait di�erences is applied to the scoring scheme. See also text for details.

In summary, all traits that represent a hypothesis are weighted equally; they all play equal roles

in assessing which species o�er the strongest tests of a hypothesis. Furthermore, only the speci�ed

traits from the setting step are considered in the calculation. Alternative hypotheses can have a

negative in�uence on the raw score, re�ecting that it is contradictory to the expected outcome

regarding the hypotheses and scoring procedure. Nevertheless, a pairwise comparison can still be

informative, even if one trait is contributing a negative score. This is a major advantage of the

whole approach, since it does not completely eliminate pairwise comparisons that are partially

con�icting to the hypotheses. Instead, those pairs are `punished', but still included. If a user

wishes to have values that are always opposite or the same as the main hypothesis, it is easy to

pick these out, due to the fact that that the main hypothesis is positivized.

Final score mechanisms

The number of scores for a particular pairwise comparison must be reduced to one to provide and

facilitate the evaluation of di�erent pairwise comparisons on the tree. Therefore, new variables

have to be introduced that re�ect all the information from the trait scores, as well as phylogenetic

information, to establish a basis to compare among pairwise comparisons with di�erent evolution-

ary distances.

31



Chapter 4 Phylogenetic Targeting

Unstandardized raw score

All adjusted trait scores are summed up to de�ne the unstandardized raw score for a pairwise

comparison,

Sraw_u =
∑

Sadj (4.4)

, where Sadj denotes an adjusted score for one of the traits of interest, as described earlier. It com-

prises all the information into a single value and thus, it represents how compelling they are to test

the speci�ed hypotheses. The range of this score is [−1 ∗NAD
, 1 + NA], where NA is the number

of alternative hypotheses and NAD
the number of alternative hypotheses with a score mechanism

unequal to `no change'. The reasoning is as follows: The scoring scheme of the obligatory main

hypothesis has a range of [0, 1], as well as the �rst scoring scheme of alternative hypotheses (no

change). Only the second and the third scoring scheme of alternative hypotheses (a lot of di�er-

ence in either of the two directions) have a variable range of [−1, 1]. Thus, the asymmetry arises

because the number of alternative hypotheses can be arbitrary, and di�erent scoring schemes have

di�erent ranges.

Standardized raw score

However, this de�ned raw score can sometimes be uninformative when compared to di�erent pair-

wise comparisons. This is due to the fact that in general, the more divergent two species are, the

more likely it is that they evolved bigger di�erences. Therefore, it is natural that distant species

pairs have higher di�erences than congeneric species pairs; an equivalent formulation is that dif-

ferent pairs have a di�erent variance. The method of pairwise comparisons has not traditionally

controlled for this and the standardization is basically a heuristic approach to help identify fur-

ther species to study, rather than an explicit analysis based on correlation, regression or other

parametric tests (where standardization is more important).

In our approach, the program overcomes the problem of di�erent variances by introducing another

variable, the standardized raw score, which is simply the normalization by the standard deviation.

For an arbitrary pairwise comparison (x, y), it is de�ned as

Sraw_s =
Sraw_u√∑

e∈(x,y) we

(4.5)

, where e denotes an edge on the path from x to y, and we the weight (or length) for edge e.

Thus, the unstandardized raw score is transformed by dividing it by the square root of the sum

of the branch lengths, and the normalization transforms the trait di�erences in a way that all

pairs behave like they have a total branch length of 1. Thus, all pairwise comparisons have a

common variance as required by most statistical tests and di�erent raw scores can be compared,

regardless of the evolutionary time since they last shared a common ancestor. Another argument

for controlling for branch lengths is that fewer traits should change on shorter branches, and thus it

helps control for confounding variables. Despite its advantages, the standardization can be turned
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o� in step 2 if desired. This can be also useful, because the method of pairwise comparisons does

not have an underlying evolutionary model and standardization might be not needed, because we

sometimes expect a larger absolute change in some trait, regardless of its rate of change, to be

more valuable than a small change over a short branch. For example, brain size that increases by

an order of magnitude might be a stronger test than a smaller amount of brain change, even if it

occurs over a small branch. The choice is up to the user, based on their knowledge of the system

and hypotheses.

If the standardization is disabled, then both raw scores are equal. However, it is the deciding score

in the whole scoring system, and it is the score that is considered when choosing among pairs of

species that o�er the most power to test hypotheses.

Pairing score

The pairing score (`pairing' as suggested by Maddison [44]) re�ects the score of a whole set of

pairs (see section 4.3.8 for a de�nition). It is the sum of all selected pairwise comparison scores

and represents how compelling the set of species is to test the hypotheses, given the user-speci�ed

settings related to the compatibility of the hypotheses. In the application, the pairing score is

displayed above the summary table, whenever at least one pair is selected.

Factors that in�uence the raw score

The scoring system is very crucial since it forms the basis for the decision on which pairwise

comparisons o�er the most power. Thus, it is also important to be aware of the main factors that

in�uence these scores. Most of the reasons are evolutionary based; however, less obvious factors

also contribute to the score and are therefore worth noting. The following list describes the most

important factors that in�uence the raw score of a pairwise comparison:

- Clear-cut di�erence in the main hypothesis: Pairwise comparisons with a big di�erence

in the main hypotheses indicate that there has been more evolutionary change. This leads

to higher power, due to a stronger e�ect size.

- Control for confounds and alternative hypotheses: Depending on the particular ques-

tion, it may be reasonable to control for confounding variables or investigate alternative

hypotheses. This can be controlled by specifying alternative hypotheses, and they can also

contribute to the power of a pairwise comparison by `favoring' only appropriate pairwise

comparisons, according to the chosen settings. Each alternative hypothesis changes the �nal

raw score, because it is the sum of all hypotheses traits.

- Di�erences that happened in a short period of time: It is generally interesting if big

di�erences in a certain trait happened in a small amount of time. This could potentially

indicate evolutionary pressure, and should be rewarded with more power.

- Correlated predictor variables: Another factor to consider is whether the predictor

variables are correlated. For mutually exclusive hypotheses we expect that if two traits are

uncorrelated, there will be more contrasts where the �rst is one sign, and the second is the

opposite. However, if they are highly correlated, we will have less power to distinguish among

them, because we would have fewer contrasts that di�er strongly. Similar logic could apply
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to non-mutually exclusive hypotheses � it will be more di�cult to �nd cases where change in

one trait has little change in the other trait, and so correlation among the predictor variables

will reduce the power to test compatible hypotheses. Nevertheless, this all depends on the

direction of correlation and the speci�c predictions.

- Selection of species: It also depends on the selection of species one is looking at: If the

species diversity is high, than the di�erences are likely to be big in some pairs, because a

large amount of time is present since these species split up. Thus, small di�erences achieve

only inconsiderable power, because much greater di�erences in more diverse species pairs

are present. Otherwise, if one is investigating only close relatives, than the di�erences are

probably much smaller, but, nevertheless, informative. Therefore, we have to give these

small, but still extremal, di�erences more power, because they are the most compelling in

the considered subset of species.

4.3.6 Target Variable

In step 2, the user can choose to specify a target variable. The purpose of this feature is twofold:

First, it provides a mechanism that easily selects those pairs of species that have already been

studied or not studied in relation to a speci�c dependent variable, such as sleep durations or a

cognitive task. We might want to make use of this information to identify other species that should

be studied compared to these already studied species. Secondly, it enables the investigator to see

the distribution of the studied species in the tree (see Figure 4.6).

A target variable must be a discrete binary variable, because the nature of this variable questions

if data are available or not for a particular species5. From all traits, PhyloTargeting automatically

detects those that come in question to be a target variable. It should also be noted that the target

variable does not in�uence the pairing score; instead, it is just an additional selection factor that

further screens pairings for their relevance to the hypotheses of interest.

We now describe both purposes in more detail:

- The �rst purpose is a screening measure among all possible pairs. It can be seen as an

additional constraint that must be ful�lled if a particular pair should be considered in the

analysis. After a target variable is speci�ed, di�erent options for this selection process can

be speci�ed:

- Data are available for both species (marked as '2')

- Data are available for one species (marked as '1')

- Data are available for at least one species (marked as '1' or '2')

- Data are available for none of the species (marked as '0')

These options are intuitive: If option 1 is selected, only those pairs are considered that

have no missing data in both species that form the pair; all other pairs are neglected. For

example, if the target variable is a variable where data are available for all species, no pair

will be neglected. However, if only a small amount of species have been studied in relation to

this variable, most of the pairs will be neglected and only those which contain these studied

species are left. This concept can be applied to the other options as well.
5 data available that is coded as 1 / no data available that is coded as 0
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Figure 4.6: An example screenshot that illustrates the function of the target variable (3rd column). On
the left side, no target variable constraint is speci�ed, and all pairs are displayed, independent of the value
in the target variable. However, on the right side, after specifying that only pairs should be considered
that have exactly one missing value in either of the two species in the target variable (marked as '1'), all
pairwise comparisons where data are available for either 0 (marked as '0') or both (marked as '2') species

would be removed from the set and are marked gray.

- It allows to quickly `pinpoint' where the missing data points are, which helps identifying

potential biases as discussed in Chapter 1. The implementation is simple, because the

program must only store a binary variable for every species, i.e. according to whether it has

been studied. The graphical visualization of this issue is described in section 4.4.3.

4.3.7 Contrast Selection

To test hypotheses in a comparative context or, as in this approach, to test which species should be

studied regarding particular hypotheses, species values needs to be compared and their di�erences

(contrasts) must be calculated. The more contrasts we have, the more likely it is that patterns

are detected. Moreover, with a growing number of contrasts, a higher proportion of the true

phylogenetic diversity of a lineage is considered. Di�erent contrasts must be phylogenetically

separate, and this criterion is of utmost importance. Hence, we need a feature that enables us

to select species pairs along the tree (and thus creating a pairing that consists of more and more

pairs), while guaranteeing that the phylogenetically separate constraint is always ful�lled. This

unique feature is the contrast selection procedure and it allows the selection of a pairing in real-

time and automatically guarantees that it is phylogenetically separate. That is, no branch is

used twice, and thus, statistical independence is assured. Generally speaking, it also allows the

investigator to visually see the dependencies among the pairwise comparisons along the tree. In

practice, it is intuitive and fast, and allows a real-time investigation of all pairwise comparisons.

Internally, it works as follows:

- The investigator selects a pair, for whatever reason (e.g., the pair has either a high score, or
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it is informative in another way).

- The algorithm automatically determines all pairs that share at least one branch with the

just selected pair and inactivates these pairs by `locking' them (see Figure 4.7).

- The investigator can select more pairs, until no pair can be selected due to the phylogeneti-

cally separate constraint. The investigator can now either `accept' this pairing or change it

by deselecting already selected pairs.

- The pairing score is determined (sum of the raw scores of all selected pairs).

Figure 4.7: Example of the contrast selection procedure: At the beginning, no pair is selected (left).
However, after selecting the Eulemur fulvus - Eulemur rubriventer pair, all phylogenetically non-separate

pairs are automatically determined (right).

From an informatics point of view, this is implemented as follows:

- Every pair stores the IDs of the allocated branches in an associative array (`branch array').

- At the beginning, every pair is selectable.

- Whenever a pair is selected, all phylogenetically non-separate pairs (regarding the set of

selected pairwise comparisons) are determined6. These pairs are then removed from the

set of selectable pairs and marked. The selected pair changes its state to selected (see

section 4.3.2), and this process continues unless no pair is selectable anymore.

- The pairing score is determined by summing over the raw score of all selected pairs.

- Whenever a pair is deselected, all dependencies as well as the pairing score are recalculated.

In summary, a pairwise comparison can have three di�erent states in the rightmost column in the

summary table:

- SELECT : This pairwise comparison can still be selected. By clicking on the `SELECT' link,

the particular pairwise comparison changes its state to selected and the row is marked blue.

Finally, the algorithm described above determines all phylogenetically non-separate pairs.

- LOCKED : This pairwise comparison cannot be selected anymore, because at least one al-

ready selected pairwise comparison shares at least one common branch. These pairs would

then be phylogenetically non-separate and thus, no selection is possible.

- SELECTED : This pairwise comparison is already selected (indicated by a blue row). That

is, the path connecting the two species is allocated in the tree, and no other path may cross.

6that is, the intersection of the branch arrays is not empty.
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By clicking on the `DESELECT' link, the selection is removed and the connecting path is

freed. To reset all selected pairwise comparisons immediately, the user can also click on

`Unset' in the rightmost table header column.

4.3.8 Maximal pairing

The previous section introduced a way to generate a pairing. This is a crucial task and one

immediate apparent criterion is to select a pairing that gives the highest overall score, as this

would indicate the set of species that gives the most power to test the hypotheses. However, with

large data sets and a high number of pairwise comparisons that needs to be considered, this is

di�cult to achieve manually, due to the complex nature of the pairs that must not share a branch.

Hence, we developed an algorithm that automatically determines the pairing with the highest

overall score, which we call the maximal pairing.

De�nitions

We need some terms and de�nitions for the following sections. To our knowledge, some terms

were �rst introduced by Maddison [44], and we use a similar terminology to avoid confusion. This

may also help to establish these terms in the scienti�c community.

De�nition (degree of a node): The degree of a particular node is de�ned as the number of

children.

De�nition (path between two taxa): The path between two taxa is the path on the tree that

links the two taxa. That is, we begin at the ancestral node (the last common ancestor of the two

taxa) and proceed tipward in two directions, on each reaching a di�erent terminal taxon.

De�nition (pair): A pair is a set of two terminal taxa as well as their corresponding path.

These three de�nitions are straightforward and illustrated in Figure 4.8.

De�nition (Phylogenetically separate pair, PSP): A pair of terminal taxa is denoted as

phylogenetically separate7 if none of the paths from other pairs touch or cross their path.

In literature, this is often called phylogenetically independent. However, as Maddison mentioned,

this is misleading because the pairs might be not independent in a statistical sense. Hence, the

term phylogenetically separate is preferred. Two pairs are phylogenetically separate if and only if

they do not share a common branch. This idea is crucial, and illustrated in Figure 4.8.

De�nition (v-rooted PSP or v-rooted pair): Given an arbitrary internal node v, a particular

PSP is denoted as v-rooted PSP or v-rooted pair w.r.t. v if v is the last common ancestor node of

the PSP.

This de�nition is new and we need it for the maximal pairing algorithm to explain the basic

concepts.

De�nition (pairing): A pairing is a set of PSPs on a tree.

7A phylogenetically separate pair and a pairwise comparison represent the same entity throughout this thesis.
However, if we want to highlight the phylogenetically separate constraint, we prefer the term PSP, whereas we
prefer the term pairwise comparison (sometimes also pair for simplicity) if this constraint is not important in
the speci�c context.
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Figure 4.8: An exemplary sample tree for the terms introduced in this section. Three pairs (1, 2, and 3)
and four interior nodes (all have degree 2) are illustrated. With respect to the arrow-marked node, pair 2
is a rooted PSP, whereas pair 1 and pair 3 are not. Furthermore, pairs 1 and 3 are not phylogenetically
separate, whereas 1 and 2 are. Thus, the set of the three pairs is no pairing, because two branches are

used twice. See also text for details.

As one can see from the de�nition, pairings must have the property that they are phylogenetically

separate. That is, the evolutionary paths linking the terminal taxa cannot be shared. In general,

more than one pairing exists that satis�es the phylogenetically separate criterion and we have to

choose among di�erent pairings. This automatically leads to the following de�nition:

De�nition (maximal pairing): A maximal pairing is a pairing that maximizes the score of the

pairing. That is, the pairing score is maximal among all possible pairings.

De�nition (score of the maximal pairing): The score of the maximal pairing is the sum of

all PSP scores that belong to the maximal pairing.

The so-de�ned maximal pairing is the pairing that comprises the most power to test the speci�ed

hypotheses. It is therefore a fundamental concept of this work, and will be explained in great

detail in this section. Figure 4.9 shows all possible pairings for a small example tree.

Figure 4.9: All six possible pairings for an example tree consisting of �ve species. Which one should be
preferred?
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De�nition (availability-code): The availability-code for a node v is a string of length degree(v)

consisting of characters 0 and 1, where character 1 at position i indicates that the edge that

connects v and the i-th child is not allocated by a PSP, whereas 0 indicates the opposite. We call

an availability-code smaller compared to another one if the number of character 0 is bigger.

This concept is fundamental for polytomous nodes, and explained throughout this section (see

also Figure 4.10).

Preliminary considerations

At �rst, we brie�y discuss some concepts that are needed to calculate the maximal pairing.

1. Preprocessing

We have to do some preprocessing steps before the maximal pairing algorithm is called. This

is due to the fact that we need additional information in the algorithm and it is much more

e�cient to compute this information initially rather than repeatedly while the algorithm

runs. These measures greatly improve the execution time, an issue that is further discussed

in Chapter 5.

Speci�cally, we have to determine all pairs that belong to a particular node. This procedure,

hereafter called pair allocation, is straightforward and described only brie�y. For every pair

(n(n−1)
2 at most), we have to determine the ancestral node x that links both paths. This

node represents the last common ancestor of the PSP and the PSP is thus an x-rooted PSP.

We then store the ID of the PSP in node x. This procedure allows a O(1) lookup for PSPs

that belong to a particular node, an issue that greatly reduces the execution time of the

algorithm, especially for polytomous nodes.

2. Determine all leftover subtrees for a particular PSP

This procedure, hereafter called subtree identi�cation, is called whenever a PSP has been

selected. The purpose is to determine all leftover subtrees that arise with this particular PSP

(see also Figure 4.10). Subtrees of size 1 (that is, terminal nodes) are neglected, because no

PSP can be selected in that subtree if only one node is available. If the root of a subtree is

a polytomous node, we also have to retrieve information about the availability-code. This

concept guarantees that the maximal pairing is indeed found, and it incorporates the special

property of polytomous nodes that more than one rooted PSP can be selected without

violating the phylogenetically separate constraint.

General Diagnosis

A brute-force approach to determine the maximal pairing is unsatisfactory, because this is in

general not feasible since the number of possibilities grows exponentially with the number of

species. Therefore, an algorithm is needed that will eliminate most of the possibilities due to

certain constraints and thus makes computation of the maximal pairing feasible. Indeed, a dynamic

programming algorithm can be developed, based on the following idea: Imagine the maximal

pairing on a tree. There are two distinct possibilities for the root node, hereafter called r:

1. No PSP goes through the root of the tree
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Figure 4.10: Illustration of the leftover subtrees and availability-code concepts when a PSP is selected.
In this example, a rooted PSP (8 versus 11) for node 1 is shown, which yields to three non-trivial subtrees
that have to be evaluated: Two of them are polytomous (7 and 12); one of them is dichotomous (4). For
each polytomous subtree, not only the node itself must be stored, instead we also need information about
the availability-code. As highlighted in the example tree, all children of node 12 are `free' (`111') when
pair 8-11 is selected, whereas only node 10 and node 9 are `free' for node 7 (`110', left to right). For

dichotomous nodes, as with node 3, this information is redundant.

In this case, hereafter called case 1, no r-rooted PSP exists, and all PSPs that belong to the

maximal pairing must be located in the descendent subtrees (children). Thus, the problem

can then be decomposed into smaller instances, because subtrees do not share any branches

and can thus be treated separately. For example, if r has a degree of four, then we decompose

the problem into four smaller instances and recursively call each children separately.

2. At least one PSP goes through the root of the tree

In this case, hereafter called case 2, at least one r-rooted PSP is selected, and we have to

call the subtree identi�cation procedure for each selected r-rooted PSP. Each leftover subtree

can be evaluated separately, using recursive calls.

Both cases allow a decomposition of the initial problem into smaller instances, which is essentially

the basic idea of the dynamic programming approach. It can be de�ned as a general design

technique that exhibits the property of overlapping subproblems. By solving smaller instances

once, recording the solutions in a table and �nally extracting these solutions to the initial instance

from the table, we can design e�cient algorithms.

Maximal pairing algorithm

In practice, however, we do not know which set of PSPs yield to the maximal pairing. Thus, we

have to develop an algorithm that proceeds from the root of the tree up to the leaves (top-down

approach) to determine the maximal pairing. Assuming that we want to determine the score S of

a particular node T , the algorithm works as follows:

1. Determine the score of case 1

This includes recursive calls for all children and summing up their scores. If a particular

child is polytomous, we call it with an availability-code consisting of a series of the character
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1, indicating that we have to consider all children. Speci�cally, we have

STcase 1
=

∑
Sdesc(T ) (4.6)

, where desc(T ) represents all children of T .

2. Determine the score of case 2

This includes the determination of at least one T -rooted PSP that maximizes the following

term:

STcase 2
= max

R
(SR +

∑
Ssubtrees(R)) (4.7)

where R is a rooted PSP for node T , SR the score of R and subtrees(R) represents all leftover

subtrees in relation to R.

If the node is dichotomous, we have to determine the maximum of all possible T-rooted PSPs

and their arising subtrees. If the node is polytomous, however, this technique is not su�cient,

because more than one T -rooted-PSP can be chosen, as mentioned earlier. Instead, we have

to determine the maximum for all possible combinations of T -rooted PSPs and their arising

subtrees. Thus, polytomous nodes are recursively called multiple times, until no more rooted

PSP can be selected, and every call decreases the availability-code.

3. Determine the maximum of both cases

Finally, we compare these two cases, and the maximum of both is the actual score of the

node. If case 2 scored more positively, than we also have to store the IDs of all selected PSPs

in the node object, which is necessary for the backtracking procedure.

Graphically, we can illustrate the decomposition of the two cases as follows (shown for a dichoto-

mous tree):

Figure 4.11: Graphical representation of the decomposition. See text for details.
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We immediately arrive at the following recursion that calculates the score ST for a particular

node T :

ST = max


∑

Sdesc(T)

maxR (SR +
∑

Ssubtrees(R))
(4.8)

with initial conditions ST = 0 if T is a leaf. Note that in this formula, in the case of polytomous

nodes, a node can be a subtree of itself, but with a smaller availability-code.

Backtracking

After computing the score of the maximal pairing, we have to reconstruct the PSPs that belong to

the maximal pairing. This procedure is typical for most dynamic programming algorithms: One

�rst calculates the value of the optimum and one then reconstructs the solution, based on the

information collected in the forward recursions. Again, we apply a top-down approach to proceed

the tree from the root to the leaves to reconstruct the maximal pairing.

For a particular node n, we �rst determine which of the two cases achieved the higher score. If case

1 scored higher, then we recursively check all children with the same procedure. If one of these

subtrees is polytomous, then we call this particular subtree with an availability-code that consists

of a series of the character `1', representing that all children have to be incorporated. If case 2

scored higher, however, we have to distinguish between dichotomous and polytomous nodes.

Dichotomous nodes For dichotomous nodes, this is remarkably easy, because only exactly one

n-rooted-PSP goes through the node. This n-rooted-PSP is uniquely determined8, and we simply

add its ID to the maximal pairing. We then have to determine all leftover subtrees from this

particular PSP. The backtracking procedure is then called recursively for every leftover subtree. If

one of these subtrees is polytomous, we call it with a particular availability-code (which contains

also 0-characters in this case), as described earlier.

Polytomous nodes For polytomous nodes, the backtracking procedure is more complex, because

more than one n-rooted PSP can be selected without violating the phylogenetically separate

constraint. We apply the following algorithm to determine all PSPs that belong to the maximal

pairing:

1. Call the polytomous node with a particular availability-code. Perform a lookup if a rooted

PSP belongs to that availability-code.

- If not, no more rooted PSPs belong to that node in the maximal pairing. We recursively

call the backtracking procedure for all children where the availability-code is 1, and

abort. This ensures that we also incorporate the scores of all `free' children.

- If yes, at least one more rooted PSP belongs to that node in the maximal pairing. Go

to step 2.

2. Add the rooted PSP that is associated with the availability-code to the maximal pairing,

and recursively call the backtracking procedure with all leftover subtrees from that rooted

8based on the collected information in the forward recursions
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PSP. Update the availability-code with a new smaller one that re�ects the allocation of the

path from the last added rooted PSP. Go to step 1.

Figure 4.12: Backtracking Overview. At the left, a phylogeny with the maximal pairing is shown. At
the right, parts of the backtracking concepts are presented; see also text for more details. For simplicity,
only interior nodes are labeled and only relevant parts of the arrays are shown. PSP e (s5 - s7 ) is not
highlighted in the tree. It does not belong to the maximal pairing of the tree, because PSP d already
allocates the edge to s5. However, it does belong to the maximal pairing when the subtree rooted at node

4 is considered.

CPU and memory complexity

1. Preprocessing The pair allocation procedure needs O(n2) time and space, because the ID

of each PSP is assigned to exactly one node. The allocated space is deleted afterwards.

2. Maximal pairing algorithm

- Dichotomous trees The recursion formula can be also seen as follows: For every

possible path between two tips (O(n2) in total), we have to evaluate all leftover non-

trivial subtrees. The complexity to determine these subtrees is proportional to the

length of the path. Thus, O(n) time is needed to determine all leftover subtrees for

a particular pair, yielding to a O(n3) algorithm in total. This is especially true for

pectinate trees; for balanced trees, however, only O(log2 n) time is needed to determine

the leftover subtrees, because the height of the tree is only log n. Thus, for balanced

trees, the maximal pairing can be computed in O(n2 log2 n) time. Furthermore, O(n)
space is needed to store the scores.

- Polytomous nodes The score for a polytomous interior node equals the dichotomous

case, plus an additional factor 2deg(node)−2 that accounts for all combinations of calls

with a particular availability-code.

3. Backtracking Backtracking can be computed in O(n2) time, because O(n) nodes have to
be evaluated, and for each node, O(n) time is needed to identify the subtrees if case 2 scored

higher. In practice, however, the procedure will be much faster due to several reasons:

- Only O(1) time is needed if case 1 scored higher.

- The number of nodes that have to be evaluated decreases if case 2 scored higher.

- Only O(log2 n) time is needed for balanced trees to identify the subtrees.
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Improvements

The execution time of polytomous trees can be improved to a polynomial algorithm by solving

a maximal weighted matching problem for each polytomous node. This can be done as follows:

Suppose the path of a particular PSP (a,b) goes through a polytomous node v. Let w be the child

of v that is allocated by PSP (a,b). Then we need to compute the score of the leftover subtree

T (v)\T (w). To this end we need to optimize over all v-rooted PSPs (except the v-rooted PSPs

that go through w) and `singleton' children u of v. The former represents case 2, and the latter

case 1 in the maximal pairing.

This can be viewed as a matching problem and the following auxiliary graph G. The vertex set

consists of all the children u of v except w, and a twin u∗ for each u. We insert an edge in G

for each pair of children u, u′ and between u and its twin u∗. The weight of an edge (u, u′) is the
score for the v-rooted PSP, including the scores of all leftover subtrees. The score for a `twin edge'

(u, u∗) is the score of case 1 in the maximal pairing of node u. The optimal score that can be

obtained on T (v)\T (w) is then the maximum weight of a matching in G, which can be computed

in O(2(deg(v)− 1)3), using the algorithm of Gabow [21].

Concluding remarks

At the end, the following reasons are possible why species or species pairs have not been selected:

- A particular species has been excluded from the analysis (which is indicated in the graphical

representation)

- A particular species has missing data relevant to either of the hypotheses, which also results

in exclusion of the species

- A particular pairwise comparison does not ful�ll the target variable constraint

- The raw score of a particular pairwise comparison is 0

- No free path to other species exist

- Other pairwise comparisons have higher scores and have therefore been preferred

Furthermore, we want to point out that the maximal pairing does not necessarily select the

pairwise comparisons that have the highest scores of all considered pairs, because those high-

scoring pairwise comparisons usually exclude too many other pairs in in order to ensure the

phylogenetically separate constraint. However, it is guaranteed that no other set of pairs yields to

a higher overall (pairing) score.

4.4 Analysis and Visualization

In this section, we describe analysis and visualization measures that have been developed to facil-

itate the interpretation and the general understanding of the results. To give an initial overview,

we refer to Figure 4.13, which graphically presents some of the methods.
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Figure 4.13: Overview of the analyses and visualization options.

4.4.1 Summary Tables

One main purpose of the program is to automatically calculate all possible pairwise comparisons.

Since this number can become very large rapidly, it is indispensable to display them in a readable

modality. We therefore provide summary tables of di�erent types. They facilitate the search for

a particular pairwise comparison, the analysis of it, or simply the export to a generally known �le

format. They have the following properties:

- All informative pairwise comparisons are shown.

- For each of them, information about the following properties are provided:

- Scores for all traits (for each trait, raw score and adjusted score are displayed)

- Phylogenetic information (the sum of the branch lengths and the number of included

branches)

- Target variable (if speci�ed)

- Final scores (the unstandardized and the decisive standardized raw score)

- The pairing score, if at least one pairwise comparison has been selected

- The possibility to select particular pairwise comparisons via contrast selection (only available

in step 3)

- The speci�ed pairing can be graphically illustrated (see next section).

Summary tables can be found in di�erent locations, and each of them has a distinct meaning:

- Show all informative pairwise comparisons: All informative pairwise comparisons are

shown (step 3).

- Show only pairwise comparisons from one species: One can choose a species and

display only comparisons from this particular species (accessible from step 4). This makes

it easier to investigate pairwise comparisons from one speci�c species.

- Show only selected pairwise comparisons: With this option, only pairwise comparisons

that belong to the speci�ed pairing are displayed (accessible from step 4). This pairing can

then be further analyzed and graphically displayed.
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Figure 4.14: A sample output from the summary table in step 3.

With these intuitive displays and interactive screens, a simple, but powerful mechanism is provided

to explore the calculated pairwise comparisons and their dependencies. Thus, meaningful and

signi�cant comparisons can be found, selected, and analyzed.

4.4.2 Pairing Visualization and Statistics

Pairing Visualization Although it is not mandatory to visualize a pairing, it is very useful to

improve general understanding. Especially if the tree contains many species and the number of

possible pairings is big, it is hard to imagine how the selected pairs are distributed along the

tree.

The user can access the graphical output algorithm from di�erent sites, and each ful�lls a particular

purpose. Whatever that purpose is, either to visualize a manually speci�ed pairing or the pairing

that is automatically determined by the maximal pairing algorithm, this graphical representation

greatly helps to see the distribution along the tree. It also becomes immediately clear why other

species or pairs of species cannot be selected anymore due to certain constraints.

We implemented an algorithm that creates a graphical output of the results. The following points

should be ful�lled to create output that is helpful for the interpretation:

- The tree drawing algorithm must produce optically attractive trees, independent of the

number of species. Further details on what properties must be ful�lled to achieve optically

attractive trees are omitted here, since that is out of the scope of this thesis.

- Edges should be colored in the following way:

- Edges that belong to any pairwise comparison in the pairing should be colored, other-

wise not.

- Both species from a pairwise comparison and the connecting path between them should

be colored the same.
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- The colors for di�erent pairwise comparisons that belong to the pairing should be

distinct from each other and the spectrum of all colors should be scattered as neatly as

possible. This is achieved with a simple function that allocates a random color (with

the constraint that it must be neither too bright nor too dark) to each selected pairwise

comparison and their path on the tree.

- Edges with a length of zero (re�ecting polytomies) should be drawn thinner to distin-

guish them from non-zero edges.

- The following groups of species should be notably marked:

- Species that are included in the analysis, but, nevertheless, do not belong to the pairing

- Species that are excluded from the analysis

We use a recursive algorithm, proceeding from the root of the tree up to the leaves, to draw the

phylogenetic tree. This algorithm works as follows:

- For every node, we determine the number of children.

- If children exist (that is, the node is not a tip), then the space that must be allocated

for the particular subtree is calculated. This is dependent on the number of species in

this subtree; the bigger this number, the more space must be allocated. We then draw

lines (either horizontal and vertical, or diagonal if the node is polytomous) to connect

to the descendent subtree. The color of the line is determined by the associated edge

object, and this depends on whether the branch is a�liated with a selected pairwise

comparison. Then, for each children, we call the recursive procedure again.

- If no children exist (that is, the node is a tip), one horizontal line is drawn to the right,

the name of the species is added and further adjustments (determining if the species is

included or excluded, paired or unpaired) are made. The recursion procedure stops in

this case, and since the depth of the tree is �nite, it is guaranteed that the algorithm

stops after a �nite number of calls.

Finally, this procedure yields a graphical representation of the phylogenetic tree from the data �le,

together with a visual overview of all selected pairwise comparisons and their distribution along

the tree (see Figure 4.15 for an example).

Pairing Statistics We also provide some basic statistics about properties of the chosen pairing,

which include the following:

- The number of pairs that have been selected

- The number of branches that are involved in the pairing

- The maximum number of branches that can be involved in a pairing (this equals the number

of branches in the whole tree subtracted by the number of branches that cannot be allocated

due to missing data)

- The proportion of the last two elements

- The average number of branches that are involved in each contrast
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4.4.3 Target Variable Visualization and Statistics

As highlighted previously, one purpose of the target variable is to determine the distribution of

collected data along the tree. This enables the user to easily identify where the missing data points

are. We implemented a tree visualization procedure that graphically identi�ed these data points,

and it works as follows:

- We draw the regular tree structure together with the information regarding whether a par-

ticular species has been studied, which is provided from the target variable.

- Species that have been studied are marked with a red arrow at the right.

- Furthermore, to quickly see how well particular lineages have been studied, every interior

node (hereafter called n) that contains more than ten9 species in the subtree rooted at n has

two associated values with it.

- The �rst number shows the number of species that have been studied regarding the

target variable in the particular subtree that is rooted at n.

- The second number shows the number of total species in the particular subtree that is

rooted at n.

With this measure, one can quickly identify those lineages in the tree that contain a high

proportion of missing data, and an example screenshot is provided in Figure 4.15. Thus,

gaps can rapidly be revealed.

Figure 4.15: Example output from a tree with 25 species and 12 selected pairwise comparisons. Every
pairwise comparison color is random, and species marked with brackets and * are not selected. All species

with a red arrow at the right are species where data are available. See also text for details.

9This is the default value as speci�ed in the TreeDrawer class. Future versions may have this value as parameter
in the web frontend.
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4.5 Application Issues

In this section, further issues that belong to the application rather than the methodology itself

are presented.

4.5.1 Web Content Accessibility

An important component in the development of the PhyloTargeting program was to create a

dynamic website that ful�lls most points of the latest version of the W3C Working Draft, the

Web Content Accessibility Guidelines 2.0 10. These guidelines cover a wide range of issues and

recommendations for making web content more accessible, and this a�ects how users complete

web-based tasks and �nd the information or features they want. An accessible interface can help

to motivate users to work with the program, and it makes these tasks both easier and more

e�cient. This should be the main goal for any scienti�c program, and hence we took this issue

into account as well. Following these guidelines creates dynamic web pages with the following

properties11, which are described as follows, as well as implemented measures to accomplish these

properties:

1. �Information and user interface components must be presentable to users in ways

they can perceive�

- The whole website is divided into hierarchical sections and subsections with descriptive

titles.

- All sections have a logical, clearly arranged structure.

2. �User interface components and navigation must be operable� :

- The use of progress bars for every crucial calculation helps the user to estimate how

long the calculation will take. Furthermore, it informs the user that the program is

running and that no error occurred.

- An example �le is provided, and this �le can be easily chosen in step 1. This is a good

starting point for new users to explore the possibilities of the program. The user can

also see the format of the NEXUS �le that is used.

Figure 4.16: Screenshots from the progress bar (left two pictures) and an explanation box (right picture).

10http://www.w3.org/TR/WCAG20/
11 http://www.w3.org/TR/2007/WD-WCAG20-20071211/
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3. �Information and the operation of user interface must be understandable�

- A two-step `select and con�rm' process is used to reduce accidental selections for critical

functions (e.g., in step 2).

- Explanation boxes are provided for every important element or terminology. This highly

improves the understanding of the options. Moreover, the investigator may not need

to look in the manual.

- Users are instructed how to modify selections in critical functions (e.g. with the help

toolboxes, see guideline 2)

- Use page design, graphics, colors, and fonts to clarify complex text and provide sum-

maries to aid understanding (e.g. step 3).

4. �Content must be robust enough that it can be interpreted reliably by a wide

variety of user agents�

PhyloTargeting runs on di�erent browser versions, although the design can be slightly dif-

ferent due to di�erent browser implementations of certain technologies (e.g., XHTML and

CSS). The functionality is, however, nevertheless guaranteed. We checked the behavior of

the site in a range of currently used browser versions: Firefox 2, Internet Explorer 6 and 7,

Opera 9 and above, Safari 3. According to Figure 4.17, this selection covers over 98% of the

whole browser spectrum.

Figure 4.17: Browsers Market Share Results, March 2008 [46]

PhyloTargeting uses XHTML and CSS, both are robust and recommended technologies for

web programming. Thus, future compatibility should be guaranteed.

4.5.2 Export and Saving

Export Two di�erent export functions are available. They can be accessed from all of the summary

tables by clicking the appropriate link in top of the table and are described as follows:

- Every HTML table on the website can be exported to a PDF. This �le can then be easily

printed out if desired, or used for another purpose. The PDF creation itself is implemented

using a free PHP-PDF library, FPDF12. Additionally, we implemented some extra features

to facilitate reading of the output (e.g., all font sizes are automatically adjusted to �t into

the cells and both table header and page numbers appear on every page to guarantee lucidity

and clarity).

12http://www.fpdf.org/
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- In addition to the PDF creation, each HTML table can be exported to a general comma

separated text �le. This can then easily be imported into spreadsheet programs or statistical

packages.

Figure 4.18: A sample output from the PDF version of the summary table.

Saving the state of the application For complex and especially time-consuming applications,

a very desirable feature is to save the state of the application and continue the analysis at a later

date. Such features are implemented to greatly improve the usability.

From an informatics point of view, this is done by serializing the session variable13 and providing

this string to the user. The user is then able to save it as a �le to a local hard disk, and at a later

date, simply upload it to the website. After that, the exact application state from the previous

analysis is restored (see also Figure 4.19). Enhanced security mechanisms need to be incorporated

in this procedure, as discussed in the next section.

4.5.3 Security

A wide range of threats face any web application. Especially for PHP, probably the most popular

web development language, security is absolutely crucial. In the last two years, there have been

numerous security alerts concerning PHP applications [11]. However, the majority of them are not

a result of �aws in PHP itself; instead, this is due to developers writing insecure code. PHP is a

13which is generated by PHP and automatically stores all the session information
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very convenient programming language, often with di�erent ways to achieve a goal. Unfortunately,

convenience often weakens security, and that makes PHP a prime candidate for misuse. User

friendliness and security safeguards are not completely mutually exclusive, and increasing security

often also decreases usability. However, we tried to make a compromise, simply because usability

is also an important issue.

From the mass of possible security attacks, only some potential risks remain, and they are brie�y

discussed next.

1. Files and Commands

User input �le has to be validated. This is a crucial step, because the whole program relies on

this �le. Thus, PhyloTargeting needs to be sure that the input �le is a compatible NEXUS

�le. The following approaches to minimize the likelihood that unsupported content may

in�uence the normal behavior of the program have been implemented:

- The user input �le must be a simple text �le in the NEXUS format. On account of

this, we check if the `#NEXUS' statement appears at the beginning of the �le14. This

simple measure should quickly exclude non-text �les.

- Every mandatory block in the NEXUS �le is parsed using regular expressions, and in

the case of any errors, the parsing procedure immediately stops and creates a speci�c

error description. This description is then sent to the user, and the temporary uploaded

�le will be deleted.

2. Sessions

Sessions can be manipulated, and careful consideration is mandatory. The user can always

save the state of the application in a downloadable session �le; this �le can then be reloaded

to continue the analysis at a later date. However, this convenience also has risks, because

the user can modify the downloaded session �le. Measures therefore are needed to detect

any modi�cation to the session �le, and it should be su�cient to validate the stored session

�les in a way that no modi�ed version is accepted.

First, the serialized session content is encrypted using MIME base6415, which prevents users

from reading and easily modifying the �le (even though it is still possible to decrypt it).

Furthermore, the MD5 hash of the encrypted �le is stored in a simple text �le (the hash

�le) on the server or local machine. Whenever a user uploads a stored session �le, the MD5

hash is determined and the �le is only accepted if the hash �le contains this particular MD5

hash. As long as this �le is protected and nobody except the program itself modi�es it, this

should allow PhyloTargeting to detect16 modi�cations of the stored session �le. However,

the �le should not be deleted, since that would prevent any user from continuing a previous

analysis.

3. Further measures

- Always validate GET and POST-variables

- Use .htaccess to restrict access to sensitive �les

14Of course, every text �le can be modi�ed in a way that this statement appears �rst.
15http://de.php.net/base64_encode
16Strictly speaking, there is a very low probability that a modi�cation will not in�uence the hash value.
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Figure 4.19: Flow diagram of the loading and saving procedure.

- We avoid using global variables, because they are a known security risk[16]. This is

also particularly important because register_globals17 are deprecated and disappeared

in PHP 6.

All of the proposed solutions are implemented in PhyloTargeting and the risk of a successful attack

is thus greatly minimized.

4.6 Summary and Application Areas

In this chapter, a detailed overview of the new methodology and the developed computer program

has been given. Numerous aspects have been discussed, and to summarize, a function overview as

well as possible application areas are provided.

4.6.1 Function Overview

The following functions have been implemented:

- Support NEXUS �les and automatically detect the relevant information

- Support an arbitrary number of trees and allow users to select and change them whenever

they want

- Support an arbitrary number of discrete and continuous traits

- Possibility of selecting one main hypothesis

- Possibility of selecting an arbitrary number of alternative hypotheses, each of which can be

scored separately

- Provide di�erent screening mechanisms:

- Possibility of choosing the species that should be included in the analysis

17http://www.php.net/manual/en/security.globals.php
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- Possibility of specifying a target variable

- Generation of all possible pairwise comparisons, together with additional information for

each of them

- Provide di�erent scoring mechanisms to discriminate between compelling and less compelling

pairs, according to the hypotheses

- Provide an optional branch length standardization method to give all pairwise comparisons

a common variance

- Provide a feature that selects a subset of compelling pairwise comparisons (pairing)

- Provide an algorithm that automatically determines a pairing with maximal score

- Provide a feature called contrast selection to manually specify a pairing

- Provide di�erent visualization mechanisms to present and analyze the results

- Visual display of all calculated pairwise comparisons in a table (including scores, phy-

logenetic information, and so forth)

- Provide an algorithm that graphically displays all selected comparisons in the chosen

phylogenetic tree

- Provide measures that quickly identify clades with a high proportion of missing data

as well as the distribution of missing data points in the phylogeny

- Provide further methods to analyze the pairwise comparisons

- Show only the pairwise comparisons from one selected species

- Show only selected pairwise comparisons

- Show only pairwise comparisons that have been automatically determined by the max-

imal pairing algorithm

- Every table can be exported to a comma-separated text �le or a PDF �le

- Allow arbitrary sorting in every table

- Provide the possibility to save the current application state to a �le to allow continuing the

analysis at a later date

- Guarantee a basic security level

- Guarantee usability and facilitate the usage of the program through sophisticated help fea-

tures (help toolboxes)

4.6.2 Application Areas

The program itself neither requires particular data nor exist strong assumptions that limit the

applicability. The following aims can be applied to all areas:

- One can quickly disclose species (entities) that con�ict the general pattern of a hypothesis.

- One can identify target species that o�er the most power to test new hypotheses.

- New hypotheses can be tested for their catholicity.

The approach can be useful to all areas where phylogenetic comparative methods are common.

Furthermore, areas that rely on understanding variation among species or other entities are a

potential application �eld. The following overview lists some of them:
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- Anthropology, socioecology and animal behavior: Comparative methods have been

an integral component of these �elds since their inception. They have been widely used to

study the complex social relationships and diverse ecologies, especially in primates.

- Conservation biology: The program might also be useful in this �eld by picking out

species that are most important to study and conserve for future study, including conserving

phylogenetic history [17, 63].

- Bioinformatics: This �eld is very widespread, and possible application areas include:

- Comparative genomics, which studies the relationship between genomes of di�erent

species.

- Analysis of gene, protein or hormone expression or drug development.

- More generally, optimization problems that rely on comparison of pairs, based on a

graph or tree structure, could be solved with the maximal pairing algorithm or a variant

of it.

To summarize, the methods developed will be broadly applicable across a number of �elds, if

appropriate, analyzable data sets are available or can be created.
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Benchmarking and E�ciency

�We all agree on the necessity of compromise. We just can't agree on when it's necessary to

compromise.�

Larry Wall (1956 - present)

In this chapter, we present and discuss benchmark results as well as implemented measures that

improve the overall e�ciency of the method.

5.1 Benchmark Methods

Benchmarking an application is an important step to measure the overall performance. This is

especially true for web applications, because they are usually a multi-user environment. This may

not be critically important if a local version of the application is installed, but, nevertheless, it is

also important to consider the performance.

5.1.1 Data Files and Setup

We generated numerous data �les which vary from each other in the number of taxa and in the

number of traits. The number of taxa varies from 50 to 250, in steps of 50. This should cover

the spectrum that is common for comparative databases. For every �le, two di�erent numbers of

traits are used and analyzed:

- The �rst contains two traits: One discrete variable (randomly �lled with 0 and 1 by Mesquite)

and one continuous variable (uniformly random �lled with a range of 0 to 50). Furthermore,

one main hypothesis (continuous variable) and one alternative hypothesis are used for anal-

ysis.

- The latter contains �ve traits: Four discrete variables and one continuous variable, with the

same random �lls as in the former case. One main hypothesis (continuous variable) and four

alternative hypotheses are used for analysis.

Both �les are based on a perfectly balanced tree without polytomies, and the data contains no

missing information. Thus, these measurements can be seen as best cases, since the average

performance decreases when the balancing of the tree decreases (see Chapter 4). However, for

average balanced trees, the results should be similar.
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Benchmarks for execution times reported here are an arithmetic mean of three independent mea-

surements for each set of taxa1, and they do not cover the time to deserialize the session �le or

other issues. We focused on two measures of execution time: The time needed to generate and

initialize the data structures and the execution time for the maximal pairing algorithm. We also

report the size of the session �le that has to be stored permanently and the maximal memory

usage2. To make it comparable, we also arbitrarily excluded a set of species for every data �le

to limit the number of pairwise comparisons in order to compare execution times among di�erent

data sets. This controls if execution time correlates with the number of taxa.

5.1.2 Results

Figure 5.1: Di�erent diagrams that summarize the benchmark results. All diagrams are in dependence
of the number of pairwise comparisons that must be generated in the dataset. For complete datasets, as
in this simulation, 50 species equals 1125 comparisons, 100 species equals 4950 comparisons, 150 species
equals 19900 comparisons, and 250 species equals 31125 comparisons. The discrimination between two
and �ve traits has been omitted for two diagrams due to the fact that no di�erence in execution time was

detectable. See also text for details.

1The program ran on a Pentium M 1.6 GHz with 512 MB RAM.
2This is measured using the memory_get_peak_usage (http://de2.php.net/memory_get_peak_usage) function.
This function returns the peak of memory that has been allocated to a PHP script and includes also the amount
of memory needed for the Apache webserver. Thus, this is only an indirect measure, because it is di�cult to
predict which amount the PHP script truly needs.
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As shown in Figure 5.1, we created di�erent diagrams to visualize the benchmark results, and the

diagrams show the following results:

- The number of traits does not in�uence the execution times (see above), and the di�erences

in the size of the session �le are small compared to the size of the session �le itself. The

same holds for peak memory usage. Thus, the number of traits is not that important for the

general performance of the application.

- The size of the session �le and the allocated memory can become very high when the number

of pairwise comparisons is large. However, we do not expect such large datasets, because a

lot of missing information is expected in most cases.

- The execution time to generate and initialize the data structures does not grow linearly with

the number of pairwise comparisons. However, it should be fast enough for usage.

- For perfectly balanced trees, the maximal pairing algorithm shows an increase in execution

time with increasing number of pairwise comparisons, as predicted in Chapter 4.

We also measured the execution time for the maximal pairing algorithm in the case of polytomous

nodes. Speci�cally, we measured the execution times for polytomous trees with a polytomous

node of degree 3 to 12 as root, whereas all other nodes are dichotomous. As we already concluded

in Chapter 4, the execution time of the maximal pairing algorithm is exponential to the degree

of the node. This should yield to a doubled execution time whenever the degree of polytomy is

increased by one. Indeed, as Figure 5.2 shows, we can observe such an exponential increase.

Figure 5.2: Execution time of the maximal pairing algorithm for polytomous trees. See text for details.

5.2 Measures for Improving the Overall E�ciency

There are many ways to improve the e�ciency of a program. Sometimes, execution time and

memory usage are not an issue, even with large data sets. However, in most cases, they are.

Web applications face the additional problem that an arbitrary number of users may use them at

the same time. Therefore, appropriate data structures, e�cient memory management, and fast

algorithms should be used. Nevertheless, all measures should also be in proportion to the e�ort.

A compromise between memory allocation and execution time had to be found, and neither of the
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two can be neglected. This section brie�y describes this challenge.

5.2.1 Data Structures and Execution Time

The most decisive question in the implementation of the program was to choose among di�erent

data structures. Momentous improvements have been made by this decision as well as with the

help of numerous measures that improve the execution time. Some basic ideas are illustrated as

follows:

- The underlying data structure that is used to represent the complex interactions is a tree

structure. In contrast to earlier implementations of the program, signi�cant speed improve-

ments have been achieved using this kind of data structure, as compared to regular non-

treelike structures.

- By saving as little information as possible, a dramatic reduction of the execution time can

be achieved. As mentioned in Chapter 4, the deletion of uninformative pairwise comparisons

greatly reduces the runtime of di�erent algorithms (maximal pairing algorithm, sorting,

traversing the arrays and searching).

- Another crucial measure was the usage of associative arrays, instead of non-associative ones,

which enables the program to achieve O(1) lookup times with e�cient implementations.

Lookups are very frequently used in the program, especially in more complex algorithms like

the maximal pairing algorithm. It is therefore essential to achieve minimum lookup times.

For large arrays, an extraordinary speedup is achieved by implementing this simple measure.

- The maximal pairing algorithm has one further preprocessing step, in addition to the ones

described in Chapter 4, that greatly reduce the execution time if a lot of missing information

is present. For most datasets, we indeed expect a high proportion of missing data. Species

that have missing data in one of the traits of interest are not valuable, and can therefore

be excluded. This is also true for interior nodes if they have exclusive nodes as descendants

that are also excluded. Thus, we can apply a recursive algorithm that checks all interior

nodes, and in the case of exclusion, the score can be immediately set to 0. This improves

the execution time of the maximal pairing algorithm, especially in the case of polytomies

(because the exclusion basically means a reduction of the degree of the node).

5.2.2 Memory Management

Memory management is of great importance for the developed application because the needed

structures can become very large and complex. The storage of all pairwise comparisons needs a

huge amount of memory, and this increases quadratically with the number of species. Hence, we

must be extremely careful of how the data are stored and represented. Furthermore, all of the data

is saved in the session �le, and thus this �le can become very large. This has dramatic e�ects: The

page load increases, because we have to unserialize this session �le on every page, more memory

on the hard disk is needed and �nally, a larger session �le leads to more network tra�c. However,

the application does necessarily allocate a lot of memory, due to the fact that a lot of information

must be stored persistently. This cannot be avoided, and great e�ort has been made to limit this
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constraint as much as possible. The following mechanisms have been developed to allocate less

memory:

- Objects should contain as few attributes as possible. This is particularly true for the

PhyloComparison object, because numerous instances of this object type typically must

be stored.

- Memory that must be allocated only temporarily (e.g., for the preprocessing step in the

maximal pairing algorithm) is freed afterwards.

- Data that are not needed for a speci�c set of settings are neglected. Speci�cally, the following

data are deleted:

- All pairwise comparison objects that are not informative to the user-speci�ed settings.

This measure had the biggest e�ect on memory saving if a high degree of missing data

is present or if constraints (e.g., target variable) exclude a lot of pairs.

- Trait di�erences that do not represent the hypotheses of interest.

5.3 Directions of Further Improvement

- The determination of the last common ancestor node can be further improved by using more

sophisticated data structures such as su�x trees [see Gus�eld [28] for details] to achieve O(1)
algorithms with less preprocessing time.

- The maximal pairing algorithm for polytomous nodes can be improved as follows:

- The complexity can be reduced to a polynomial degree using the Gabow [21] algorithm

as brie�y described in Chapter 4.

- Execution time can be improved if we saved all leftover subtrees permanently for all

pairwise comparison objects that have a polytomous node as last common ancestor.

This is due to the fact that the subtree identi�cation procedure is called multiple times

in case of polytomies, which is redundant. However, for memory reasons, we did not

implement this measure.

- Memory usage and the serialization or deserialization process are bottlenecks for large data

�les. The application can easily allocate a lot of memory for large data sets. The main

reason for this high memory usage is the fact that we need to store all edge IDs that a

particular pairwise comparison allocates for the contrast selection procedure to make the

feature usable. Future versions may change this implementation, which would dramatically

decrease the memory usage. Thus, although many techniques have been implemented that

reduce this amount as much as possible, space for further improvement is present.
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Real-World Application

�The incorrectness and weaknesses of a theory cause other minds to formulate the problems more

exactly and in this way scienti�c progress is made.�

Robert Bárány (1876 - 1936)

In this section, we apply a real-life dataset to the PhyloTargeting approach to test its e�ectiveness

and applicability.

6.1 Introduction to Sleep

Sleep is an evolutionary puzzle and the functions of sleep are not immediately apparent. It can be

de�ned as a state of natural rest that is observed in most mammals, birds, �sh, and invertebrates.

Sleep is an extraordinary complex phenomenon, consisting of environmental, psychological, phys-

iological and behavioral components that in�uence sleep durations, the number of sleep bouts

per day, and the intensity with which animals sleep. The phylogenetic context of sleep has been

studied widely [9, 39, 1, 75], and these phylogenetic analyses raise many interesting questions

concerning the function and evolution of sleep: What are the relationships between ecology, life

history, behavior, physiology, and patterns of sleep? What factors account for whether animals

sleep in one bout per day (monophasic) or multiple bouts (polyphasic)? What are the bene�ts of

sleep, and can these be assessed through broad-scale comparisons?

To answer all these questions, data are needed to test hypotheses related to the function and

evolution of sleep. But from which species should the data come? As already mentioned in

Chapter 1, huge gaps in the distribution of studied species exist. To overcome these biases, which

would provide a more general understanding of sleep's function (or functions), we need to study

more species. The identi�cation of species that are compelling to test new hypotheses could result

in new insights into sleep, and as noted in [54], �it is critically important to �ll in some of the

gaps in our knowledge of primate sleep, and to do so in a way that provides the strongest tests

of comparative hypotheses.�. In what follows, we apply the PhyloTargeting framework to this

fundamentally important question.
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6.2 Dataset and Hypotheses

We collected data on body mass, brain mass, and activity period (a discrete variable describing

whether the species is nocturnal or diurnal) for 72 primate species. We also included a discrete

trait indicating whether a species has been studied for sleep, based on the `Phylogeny of sleep' [50]

database. Brain and body mass are the weighted average of male and female individuals, both of

which may consist of more than one individual. The number of measurements per species ranged

from 1 to 54. The phylogenetic tree is based on a recently published supertree [4] and consists of

233 taxa. Thus, we have missing data for 161 species.

The reasoning for using these variables is as follows. Sleep is often thought to be bene�cial

for the brain (memory consolidation). Comparative studies, however, have revealed only mixed

support for this hypothesis. It might be the case that the species studied have not o�ered the

strongest tests for this hypothesis. Thus, it would be worthwhile to target species that di�er in

brain size. For this, we need to control for body mass, because brain and body mass are strongly

correlated. To calculate a measure of relative brain size, we regressed brain mass on body mass

and calculated the residuals; this was done using phylogenetically independent contrasts [18] in

the computer program Mesquite [45] and the PDAP package [51] within Mesquite. The exact

procedure is described in Appendix C, because the use of such phylogenetic comparative methods

is beyond the scope of this thesis.

A second hypothesis is whether body mass and sleep are linked. Phylogeny based studies have

failed to support such a link, whereas non-phylogenetic studies revealed support. Here, we used

adult body mass from animals in the wild, whereas brain mass data controlled for body mass of

animals in the laboratory that provided brain data (and included some juveniles).

A third hypothesis for which evidence was recently uncovered is that nocturnal species sleep longer

than diurnal species. Unfortunately, not enough species have been examined to determine what

might drive this, or if the pattern is general.

6.3 Application to the PhyloTargeting Framework

According to the `Phylogeny of sleep' database, the following 20 species have been already studied

regarding sleep data:
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Scienti�c name Common name

Aotus trivirgatus Northern night monkey

Callithrix jacchus White-tufted-ear marmoset

Chlorocebus aethiops Vervet monkey

Erythrocebus patas Patas monkey

Eulemur macaco Black lemur

Eulemur mongoz Mongoose lemur

Homo sapiens Human

Macaca arctoides Stump-tailed macaque

Macaca mulatta Rhesus monkey

Macaca nemestrina Pigtail macaque

Macaca radiata Bonnet macaque

Macaca sylvanus Barbary macaque

Microcebus murinus Gray mouse lemur

Pan troglodytes Chimpanzee

Papio hamadryas Hamadryas baboon

Perodicticus potto Potto

Phaner furcifer Fork-marked lemur

Saguinus oedipus Cotton-top tamarin

Saimiri sciureus South American squirrel monkey

Theropithecus gelada Gelada baboon

Table 6.1: Species with data available on sleep durations and their common names.

Although not apparent initially, these studied species are gapped in a way that some clades are

completely missing, whereas others are well-studied.

We propose the following procedure to identify key species that �ll in some of these gaps:

1. Identify clades that either contain a high proportion of missing data or that are interesting

in some other way (e.g., the great apes, which includes humans)

2. Apply di�erent targeting analyses to the program, where a targeting analysis refers to a

particular set of main and alternative hypotheses, as well as speci�cation of target variables

and branch length controls. These di�erent targeting analyses are likely to focus on a primary

main hypothesis and various combinations of alternative hypotheses, but could also include

di�erent primary hypotheses, depending on the particular goals of the study.

3. For each targeting analysis, calculate the maximal pairing. The species from these maximal

pairings can be classi�ed as potential candidates, since they represent the set of species that

provide the strongest tests of hypotheses with the speci�ed settings.

4. Consider the information content by calculating a standardized overall score for each species

pair in each targeting analysis. Also collate data on the occurrence of particular species pairs

across the targeting analyses.
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5. With these standardized scores across targeting analyses, calculate the summed pairing score

(see later in this section for more details). The species or species pairs that have the best

summed pairing score can then be classi�ed as key species, since they represent species that

provide the strongest tests for a variety of evolutionary hypotheses.

The �rst step is to identify clades that contain a high proportion of missing data. With the

measures provided by the PhyloTargeting framework (e.g., target variable), we are able to quickly

identify clades that are worthwhile for further investigation. Figure 6.1 shows these interesting

clades (taken from the PhyloTargeting program, clade numbers has been added for clarity), and

all of them are phylogenetically separate and thus non-nested. Studied species are marked with a

red arrow at the right, species where data are available are showed in black, and species where no

data are available are showed in gray. Furthermore, the phylogeny has been partitioned into nine

major clades to facilitate analysis and discussion.

64



Chapter 6 Real-World Application

65



Chapter 6 Real-World Application

Figure 6.1: Graphical tree representation of the phylogeny used in the dataset. See text for details.
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In summary, we can extract the following information from this graphical tree representation:

Clade Proportion studies
species / total species
in this clade

Studied species in this clade

1 2 / 23 (8.7 %) Chlorocebus aethiops, Erythrocebus patas

2 7 / 24 (29.1 %) Macaca arctoides, Macaca mulatta, Macaca nemest-
rina, Macaca radiata, Macaca sylvanus, Theropithe-
cus gelada, Papio hamadryas

3 0 / 34 (0 %) /

4 2 / 16 (12.5 %) Homo sapiens, Pan troglodytes

5 0 / 38 (0 %) /

6 4 / 46 (8.7 % ) Aotus trivirgatus, Callithrix jacchus, Saguinus oedi-
pus, Saimiri sciureus

7 0 / 5 (0 %) /

8 4 / 30 (13.3 %) Eulemur macaco, Eulemur mongoz, Microcebus mur-
inus, Phaner furcifer

9 1 / 17 (5.9 %) Perodicticus potto

Table 6.2: Non-nested clades that will be further examined. See text for details.

Now, it is immediately apparent that the distribution of studied species is not homogeneous. Some

clades are relatively well studied (e.g., clade 2, especially macaques), whereas other clades are

completely missing (e.g., clades 3 and 5). This suggests that collection of data on sleep is heavily

biased towards particular species. Collecting data on sleep requires that animals be brought into

the lab and acclimated to laboratory conditions, as well as expenses related to acquiring data

using EEG. Given the costs of collecting such data, we need a way to systematically identify the

species that o�er the strongest tests of adaptive hypotheses.

The second step is to apply di�erent targeting analyses and to calculate the maximal pairing. The

following analyses are applied to the PhyloTargeting framework:

Analysis Main hypothesis Alternative hypotheses

1 Relative brain mass /

2 Relative brain mass Body mass (no change)

3 Relative brain mass Activity period (no change)

4 Relative brain mass Body mass (no change), activity period (no change)

Table 6.3: All four targeting analyses that have been examined using the PhyloTargeting program.

Contrast standardization is turned o� in all scenarios, since we are mainly interested in the total

change, independent of the evolutionary time between these changes. Furthermore, in all scenarios,

the target variable is set to a discrete trait indicating whether the species has already been studied.

As target variable option, we choose the constraint to consider only pairwise comparisons where

at least one species in the pair has missing data according to the target variable.
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The third step is worth explaining in more detail. As mentioned in Chapter 4, pairing scores

cannot be compared directly across targeting analyses. To account for this, we will introduce a

standardized version of this pairing score, which helps to consider the information content from

all analyses equally. This standardization works exactly as the scoring scheme from the main

hypothesis (see section 4.3.5), thus transforming the raw scores from the maximal pairing for

each species pair to the interval [0, 1] by simply dividing by the highest raw score in the maximal

pairing. By �xing the minimum to 0, we also guarantee that all species pair in the set obtain a

positive score after the standardization.

After summing up all these standardized pairing scores for each species pair in each targeting

analyses, we obtain the summed pairing score. This score can be used to decide which species

are referred to as key species. The range of this score is between 0 and the number of maximal

pairings that have been considered, in our case thus between 0 and 4. This concept has two main

advantages: It accounts how often a particular species pair occurred, as well as how meaningful,

compared to the best-scoring one, these di�erent pairwise comparisons are. For example, if a

species pair occurred in all four maximal pairings due to topology reasons (sister species, phyloge-

netically `isolated', and so on), but the speci�c scores are small compared to the maximal score in

this set, then we do not want to consider this species pair as compelling. Another example would

be if a species pair occurred only a few times, but always with a very high score; this would also

lead to a good summed pairing score, which is desirable.

6.4 Results

In what follows, we provide statistics about all �ve maximal pairings from the targeting analyses,

since these maximal pairings form the basis for recommending which species are most worthwhile

to study in the future.

Analysis Pairing
score

Number
of pairs

Number of involved
branches / Maximum
number of branches

Number of average
branches involved
in each contrast

1 5.17 29 145 / 206 (0.704) 5

2 38.2 35 159 / 206 (0.772) 4.54

3 38.35 34 159 / 206 (0.772) 4.68

4 70.71 34 159 / 206 (0.772) 4.68

Table 6.4: Properties of all four maximal pairings, taken from the PhyloTargeting program.

In total, 2451 pairwise comparisons are informative according to the data. Due to the fact that we

have a high percentage of missing data, this number is small compared to the number of species

in the dataset. From these 2451 pairwise comparisons, the maximal pairing algorithm identi�ed

those 29-34 (see 6.4) phylogenetically separate pairs that have the highest pairing score.

It is interesting that analyses 2-4 yield to very similar maximal pairings, whereas analysis 1 shows

a signi�cantly reduced number of pairs. One reason for that could be that in analysis 1, only

one variable was considered (relative brain size). Thus, higher di�erences automatically lead to
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a better score. Higher di�erences, however, appear mostly in more distant comparisons, which

explains both the decreased number of pairs and the smaller proportion of involved branches.

We now report results from the analysis, in which we calculated the summed pairing scores for all

species pairs that occurred in any of the four maximal pairings.

Species 1 Species 2 Number of
occurrences

Summed
pairing
score

Alouatta seniculus (5) Lagothrix lagotricha (5) 4 3.28

Gorilla gorilla (4) Homo sapiens* (4) 3 2.95

Tarsius bancanus (7) Tarsius syrichta (7) 4 2.65

Cercopithecus ascanius (1) Cercopithecus mitis (1) 4 2.58

Avahi laniger (8) Daubentonia madagascariensis (8) 3 2.57

Eulemur fulvus (8) Eulemur macaco* (8) 4 2.50

Saimiri oerstedii (6) Saimiri sciureus* (6) 4 2.45

Saguinus midas (6) Saguinus oedipus* (6) 4 2.41

Galagoides demido� (9) Perodicticus potto* (9) 3 2.36

Presbytis melalophos (3) Presbytis rubicunda (3) 4 2.35

Trachypithecus cristatus (3) Trachypithecus obscurus (3) 4 2.35

Callicebus moloch (5) Pithecia monachus (5) 4 2.35

Loris tardigradus (9) Nycticebus coucang (9) 4 2.34

Nasalis larvatus (3) Procolobus badius (3) 3 2.29

Galago senegalensis (9) Otolemur crassicaudatus (9) 3 2.28

Cercopithecus hamlyni (1) Cercopithecus mona (1) 3 2.23

Macaca fascicularis (2) Macaca mulatta* (2) 4 2.22

Macaca nemestrina* (2) Macaca nigra (2) 3 2.19

Pygathrix nemaeus (3) Semnopithecus entellus (3) 4 2.15

Cercopithecus lhoesti (1) Chlorocebus aethiops* (1) 3 2.15

Lophocebus albigena (2) Papio hamadryas* (2) 3 2.15

Colobus guereza (3) Colobus polykomos (3) 3 2.15

Ateles fusciceps (5) Ateles geo�royi (5) 4 2.15

Erythrocebus patas* (1) Miopithecus talapoin (1) 3 2.14

Callithrix jacchus* (6) Callithrix pygmaea (6) 3 2.11

Table 6.5: Overview of the species pairs from all four maximal pairings. Information on the species pair
itself, including the clades the species belong to (in brackets after the name of the species), the number
of occurrences in all four maximal pairings, and the summed pairing score (rounded to two digits after
the decimal point) is provided. A `*' symbol after the species name, as in the PhyloTargeting program,
indicates that the species has been studied concerning sleep durations. The table is sorted descending
after the summed pairing score and only the 25 species pairs are listed that occurred more than twice, due

to space restrictions.

The 25 species pairs show some interesting patterns: They are all phylogenetically separate and

the pairs are all within a particular clade; no species pair belongs to more than one clade.
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To pick out the species that should receive highest priority, we summarize the results from the

previous table:

Clade Number of high-
scoring species pairs

Species pairs

1 4 Cercopithecus ascanius- Cercopithecus mitis (4)

Cercopithecus hamlyni - Cercopithecus mona (16)

Cercopithecus lhoesti - Chlorocebus aethiops* (20)

Erythrocebus patas* - Miopithecus talapoin (24)

2 3 Macaca fascicularis - Macaca mulatta* (17)

Macaca nemestrina* - Macaca nigra (18)

Lophocebus albigena - Papio hamadryas* (21)

3 5 Presbytis melalophos - Presbytis rubicunda (10)

Trachypithecus cristatus - Trachypithecus obscurus (11)

Nasalis larvatus - Procolobus badius (14)

Pygathrix nemaeus - Semnopithecus entellus (19)

Colobus guereza - Colobus polykomos (22)

4 1 Gorilla gorilla - Homo sapiens* (2)

5 3 Alouatta seniculus - Lagothrix lagotricha (1)

Callicebus moloch - Pithecia monachus (12)

Ateles fusciceps - Ateles geo�royi (23)

6 3 Saimiri oerstedii - Saimiri sciureus* (7)

Saguinus midas - Saguinus oedipus* (8)

Callithrix jacchus* - Callithrix pygmaea (25)

7 1 Tarsius bancanus - Tarsius syrichta (3)

8 2 Avahi laniger - Daubentonia madagascariensis (5)

Eulemur fulvus - Eulemur macaco* (6)

9 3 Galagoides demido� - Perodicticus potto* (9)

Loris tardigradus - Nycticebus coucang (13)

Galago senegalensis - Otolemur crassicaudatus (15)

Table 6.6: Summary of the identi�ed high-scoring species pairs, in relation to their clade. Species pairs
in column three are sorted descending by their summed pairing score, and information is provided on the

rank of the pair from Table 6.5. See also text for details.

Based on Table 6.6, we picked out species that we denote as key species for future study. Some

clades are particularly important, as follows:

- The distribution of studied species shows remarkable gaps in clades 3 and 5.

- Moreover, clade 4 (the greater and lesser apes) should receive more attention, since we

collected only information for one species of non-human ape (chimpanzee) so far and thus,

all of our knowledge about sleep in apes is based on only chimpanzees and humans.
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Following these guidelines, we want to point out �ve species that should, in our opinion, receive

highest priority for further data collection, since they both signi�cantly �ll in some of the gaps

and o�er strong tests for evolutionary hypotheses. These �ve species are the following:

Scienti�c name Common name

Alouatta seniculus Red howler monkey

Gorilla gorilla Western gorilla

Lagothrix lagotricha Humboldt's woolly monkey

Presbytis melalophos Mitred leaf monkey

Presbytis rubicunda Red leaf monkey

Table 6.7: Identi�ed key species and their common names. The table was sorted by column 1.

Another factor that is worth to be considered is that we expect comparisons where one of the

species has already been studied to be more important, because one would only need data for one

species in order to directly compare the two species that form the pair. The following �ve species

therefore also o�er strong power to test hypotheses for the evolution of sleep:

Scienti�c name Common name

Cercopithecus lhoesti L'hoest's monkey

Eulemur fulvus Brown lemur

Galagoides demido� Prince Demido�'s bushbaby

Saguinus midas Midas tamarin

Saimiri oerstedii Central American squirrel monkey

Table 6.8: Species that also o�er strong power, see text for details. The table was sorted by column 1.

Summary

Based on di�erent setups and analysis, we identi�ed ten species that we denote as key species for

testing hypotheses that link cognitive demands to sleep durations [39]. Five of them are based

on general patterns, and �ve are based on other species that have been studied. Moreover, they

signi�cantly reduce the gap bias in studying sleep in primates.
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Discussion

�The important thing is not to stop questioning.�

Albert Einstein (1879 - 1955)

Although the method of pairwise comparisons as a basis for identifying target species has proved to

be very useful, unsolved problems still exist. In what follows, we consider both outstanding prob-

lems and possible extensions, including extensions that would overcome some of the acknowledged

problems.

7.1 Outstanding Problems

7.1.1 Sampling Error and Within-Species Variation

Comparative methods usually assume that species values are the true means for those species. In

reality, species values are often only estimates due to samples of modest size, making them subject

to random error. Independent contrasts methods are sensitive to measurement and sampling error

[20, 31, 36], and data quality is crucial for these kinds of analyses. This sampling error matters

less if distant relatives are compared, because it is small relative to the evolved di�erence since

they split. However, when close relatives are compared (which is usually true for the method

of pairwise comparisons), the sampling error can overwhelm the small di�erences between those

species. Furthermore, the method of phylogenetically independent contrasts assumes that the

phenotypic means of the characters are observed in each species, rather than the means of (often

small) �nite samples [20]. Within-species variation should be negligible; however, this is a strong

assumption and can lead to serious biases. For example, Ricklefs and Starck [72] presented an

example where the contrasts with the biggest di�erences are those that come from closely related

species, and they concluded that within-species variation caused this e�ect.

For both sampling error and within-species variation, contrasts are standardized to give them

a common variance, which may cause a heavy exaggeration for close relatives after conversion.

This is true because they may largely have arisen through sampling error or within-species vari-

ation, rather than through evolution [68]. These issues can be solved di�erently: Methods can

be employed that explicitly consider this within-species variation while using phylogenetically in-

dependent contrasts [20, 36]. Another option is to apply a branch length transformation for the
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given phylogeny. Branch lengths are assumed to be proportional to expected variance of character

evolution for the trait(s) of interest. In general, such branch lengths cannot be known directly, and

testing phylogenetic signals in comparative approaches often requires appropriate branch lengths

[7]. Therefore, reasonable approximations must be employed. The issue of branch length error

on the performance of phylogenetically independent contrasts has been intensively discussed (e.g.,

see [14] for details), and several transformations have been proposed. Some of them are already

implemented in phylogeny programs (e.g., Mesquite [45]), but a detailed review of the di�erent

transformations is beyond the scope of this thesis1 (e.g., equal branch lengths (see [49]), Grafen's

rho method [26], Grafen's arbitrary method [26], Pagel's method [57], and Nee's arbitrary method

(cited in [62, p. 416]). Nevertheless, it can reduce type 1 errors and the artifacts described above,

particularly by extending branches close to the tips using the rho transformation. Rho values

smaller than 1 compress the tree near the root and expand it near the tips, whereas values bigger

than 1 compress the tree near the tips and expand it near the root [14]. Thus, in our case, rho

values smaller than 1 are worth applying.

To summarize, the presented biases can overestimate the importance of certain species pairs if

they are close relatives, and careful consideration is mandatory.

7.1.2 Phylogenetic Errors

With most phylogenetic methods, the given phylogeny is assumed to be completely true and

without any error. Clearly, this is very unrealistic, and in reality, we are never able to check the

validity of this assumption. Errors can manifest themselves in di�erent ways: Branch lengths can

be estimated imprecisely or topological error can occur. Generally speaking, both types of error

are likely to be important. Simulation studies for the method of phylogenetically independent

contrasts method exist, and they show that the method is relatively robust against such biases

[48]. However, it could lead to the identi�cation of key species that are only selected because of

those inaccuracies.

To control for uncertainty in phylogenetic relationships, we can use Bayesian approaches to es-

timate multiple phylogenies not contingent on any single phylogeny or set of branch lengths

[56, 35].

7.1.3 Statistical Power and Independency of Data Points

Another important point is that the pairwise comparisons method has less statistical power than

the original phylogenetically independent contrasts method. Due to the fact that it compares only

the tips of the phylogeny, and does not calculate comparisons based on inferred values at interior

nodes, fewer comparisons can be made. That is, it loses information in focusing only on a subset

of branches and comparisons.

At least six pairwise comparisons are needed to demonstrate statistical signi�cance in a non-

parametric test. Nevertheless, the more comparisons that are available, the higher the power

to detect di�erences, and the easier it is to control for other variables that also might have an

in�uence.
1e.g., see the PDAP [51] manual for overview (www.biology.ucr.edu/people/faculty/Garland/PDTREE_Mesquite.doc)
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An area for future research is to explore how using phylogenetic targeting might improve the

performance of the more general method of independent contrasts, in which contrasts are calculated

throughout the phylogeny. Sister species selected in phylogenetic targeting will be used also in the

calculation of independent contrasts, and thus should add to the power of this method. It seems

likely that the advantages will translate to the more general method, with speci�c advantages

depending on the distribution of traits across the entire tree.

7.1.4 Non-congeneric Species Pairs

A major advantage of the pairwise comparison approach is that few confounding variables are

expected to in�uence the results if sister species pairs are considered [52, 33]. In our approach,

however, all possible pairwise comparisons are generated. More distantly related species pairs can

also be selected, e.g. those that use more than two branches. That can be critical, because there

may be other, non-examined confounding variables that are the true reason for the di�erence.

The more distantly related two species are, the more likely it is that such an e�ect could bias the

result.

However, this is usually controlled in practice, because the contrast standardization (if enabled)

strongly weakens the score of a distantly related species pair. In the maximal pairing algorithm,

such a pair would be selected only in cases where either the tree topology is the reason (e.g., only

one free path is available and all other species have already been paired) or that particular pair

has, depending on the setup, extreme di�erences in the hypotheses. More generally, by requiring

that the alternative hypotheses have data on variables of interest to investigate those hypotheses,

it should also be possible to statistically control for confounds among the species when conducting

the actual comparative test of the adaptive hypothesis. Nonetheless, it is important to emphasize

that these pairs have to be critically considered in light of possible confounds.

7.1.5 Discrete Data Character States

Discrete characters have, by de�nition, only a �nite number of possible states. They can be treated

as ordered or unordered (see [76] for an overview, see also Figure 7.1). For binary characters (two

states), this makes no di�erence; for a multi-state character (more than two states), however,

ordered means that they have a particular sequence in which the states must occur through

evolution. Intermediate states are involved, and the costs between di�erent pairs of states are

di�erent.

Treating a character as unordered means that every state change is equal. They do not require

passing through intermediate states, because each state can directly be transformed into any other

state.

The PhyloTargeting application treats all discrete characters as unordered. Should a user have

ordered characters to analyze, a temporary work-around is to enter that data in a continuous data

table in Mesquite, which would thus treat larger changes (more discrete steps) as more important

than smaller changes. Future work could implement analyses for ordered character series in the

program, if demand for this feature arises.
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Figure 7.1: A character can be either categorized as ordered, represented in a transformation series (left),
or as unordered, represented as a complete graph (right). In the former case, the sequence of states is
�xed: To reach state 5 from state 2 one must go through states 3 and 4. Moreover, character changes from
state 1 to 2 have to be treated di�erently than changes from state 1 to 3. The �gure has been modi�ed

from [29].

7.1.6 Polytomies

Another issue that arises is that of polytomies in the tree. When conducting comparative studies,

one will often be faced with polytomous phylogenies. Polytomies can a�ect the conclusions we

draw, because most methods are sensitive to them and it has been studied intensively in the

comparative context [65, 57, 58]. Due to the dubious nature of polytomies, hard as well as soft

polytomies have to be considered separately.

Hard polytomies are usually represented as a series of bifurcations with branch lengths of 0, and the

branches are joined arbitrarily. With the original phylogenetically independent contrasts method,

this has no e�ect on the calculations [23]. However, in our approach, it indeed makes a di�erence

if the polytomy is represented as series of 0-bifurcations or as true polytomy. In the former case,

less pairs can be selected. This is due to the fact that we use pairwise comparisons, and we do not

allow for any branch to be allocated to more than one pairwise comparison. Another reason for this

discrimination is that the maximal pairing algorithm is much faster for dichotomous nodes, and

sometimes not feasible for trees with both a high number of taxa and a large degree of polytomies.

Thus, by introducing zero branch lengths, a faster execution time can be achieved. Although this

procedure loses some information, it may be sometimes preferable.

For soft polytomies, �ve di�erent methods have been proposed for the original phylogenetically

independent contrasts method (see [22] for an overview). Some of them involve the use of simulated

phylogenies [41] or random trees [47], others adjust the number of contrasts that are computed

or the degrees of freedom [66, 59, 60, 26, 27]. In this version of the program, we treat soft and

hard polytomies the same. This may be further extended by using one or more of the existing

approaches developed in previous work.

A last issue that arises with polytomies is the calculation of the maximal pairing. For polytomous

nodes, it has an execution time that is exponential to the degree of the polytomy for a node.

Thus, for phylogenies with a high degree of polytomies, a noticeable delay emerges. Although

faster algorithms exist, it is not implemented for several reasons. If the algorithm takes too long

in a particular case, then it might be worthwhile to transform all polytomies to zero branch lengths.

However, if no node has a degree bigger than ten, the algorithm should still be fast enough to

work well in practice.
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Figure 7.2: An example phylogeny that contains a polytomy, shown in two di�erent ways. On the left,
the polytomy is represented as a series of random zero branches. On the right, it is represented without

zero branches. See text for details.

7.2 Directions for Future Research

The presented methodology is only an initial framework, and more sophisticated methods may

evolve in the future. We now highlight some additional extensions and generalizations of the

methodology itself:

- The scoring system and standardization procedure can be modi�ed. Standardization can

also be applied before the values are transformed, rather than afterwards. Moreover, more

sophisticated scoring mechanisms could be applied. The developed scoring system does not

have an explicit theoretical foundation; instead, it is chosen to address a practical problem.

- It is imaginable to not only score pairwise comparisons, but also to score whole lineages

(e.g., a lineage in the tree that represents all new-world monkeys). This can be helpful to

identify subgroups that are in general more interesting in relation to a particular problem.

We also want to separately emphasize possible modi�cations to the algorithm that determines the

maximal pairing, because this idea is central to the method, and adaptations to this algorithm

could extend the usefulness and application of the approach:

- Instead of determining only the maximal pairing, the algorithm could be extended to �nd

also suboptimal pairings or, more generally, pairings with a score above a given threshold.

This can be achieved by using a variant of the original dynamic programming approach and

the backtracking procedure.

- Another development of possible interest would involve developing the program such that

users select favored comparisons or species, and the algorithm returns the maximal pairing

that includes these comparisons or species.

- Lastly, one could imagine taking into account the costs of collecting additional data, including

prior knowledge about the costs of collecting data for particular species (e.g., these costs

can be high if the species is rare). Within a particular budget, which phylogenetically

independent measures should then be taken? Which species are the most compelling, given

the limited resources researchers often have?
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7.3 Conclusion

In summary, we created a new, quantitative framework that is able to address many di�erent

questions related to data collection in the context of �nite resources. It can be therefore bene�cial

for a variety of people, and not only for comparative biologists, because the general approach can

easily be extended to other areas. Moreover, the developed algorithms may be applied to other

�elds to solve optimization problems based on phylogenies. From an evolutionary prospective,

this new methodology may also help to give new insights why species manifested such substantial

diversity.
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Installation of the PhyloTargeting

Program (Downloadable Version)

To run the program locally, or on your own server, simply follow the instructions below.

Requirements:

- Web server with support for .htaccess overwritable MIME types (e.g., Apache1). If you

do not have any experience in installing a web server and its con�guration, we recommend

the use of XAMPP2 (available for Windows, Linux and Mac OS X) or a similar package

for a web server, because the installation is extremely easy (just unpack the archive, with

no further installation necessary) and it does not in�uence the system. Be aware that the

security settings are very generous in the default setting, and modify these settings to ensure

better security.

- PHP Version 5 (tested with version 5.2.3)

- Some PHP5 libraries may be installed to enable all features, e.g. the GD library for tree

drawing (in XAMPP, this is enabled by default).

- A modern browser: PhyloTargeting works with the following browsers: Firefox, Mozilla,

Internet Explorer, Opera, Safari. However, there might be small layout di�erences with

di�erent browsers. This is due to the fact there is no common accepted standard yet. The

application has been developed in Firefox, so this might be the best choice.

Installation

1. All required �les can be downloaded as an archive from the website of the PhyloTargeting

program. This archive contains the following folders and �les:

- main- folder : contains the HTML and PHP �les that are needed for the interface

- src- folder : contains necessary basic �les and all class �les

- pic- folder : contains images that appear on the website

- lib- folder : contains external libraries (PEAR:HTTP_Upload3, fpdf4, PHP progressbar

[8])

1http://httpd.apache.org
2http://www.apachefriends.org
3http://pear.php.net/package/HTTP_Upload
4http://www.fpdf.org/
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- doc- folder : contains the documentation and example �les

- css- folder : contains the css �le

2. Unpack the archive into a suitable directory on your web server. Be sure that this directory

is set to allow con�guration overwrites using .htaccess. Furthermore, make sure that the

directory is writable by the web user.

3. Put the PhyloTargeting folder in the correct directory of your web server (e.g., in the

htdocs/xampp directory if you use XAMPP).

4. Open a web browser and type : http://127.0.0.1//webserver_speci�c_path/PhyloTargeting,

where webserver_speci�c_path re�ects the path directory to the PhyloTargeting folder.

5. You should now be able to see the index.html page of the program.

Settings

A few settings that can be adjusted if necessary. Speci�cally, three options can be changed in the

GeneralSettings �le in the src-folder :

1. MaxCombs: The maximum number of pairwise comparisons that are allowed.

2. MaxTime: The maximal number of seconds a script is allowed to run5.

3. MaxMemory: The maximal number of memory (in megabytes) that can be allocated from a

script. If the maximal memory allocation is set too low, then execution of memory-consuming

scripts will stop due to an Out-of-Memory exception. The value should be set to values above

100-150 MB to guarantee compatibility with large datasets.

A modi�cation of these settings is trivial: One only has to change these values in theGeneralSettings

�le. MaxTime and MaxMemory will be updated immediately for every session and without any

consequences. However, the updated MaxCombs value will not take e�ect before a new data �le

is submitted. Thus, already existing session �les will still use the old setting.

Support

If any problems are encountered (bugs, di�culties in installing the software), do not hesitate to

contact the author (chrarnold (at) web.de).

5see http://de3.php.net/set_time_limit for details
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Speci�cation of the Supported NEXUS

Elements

PhyloTargeting is able to read NEXUS �les that have been created with the software Mesquite

[45]; NEXUS �les from other software might be compatible as well. PhyloTargeting will encounter

an error and stop immediately if any incompatibility is detected.

Figure B.1: A simple example �le consisting of three species. It was created with Mesquite and has a
full compatibility to the PhyloTargeting application.
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The following speci�cation presents mandatory elements as well as recommended optional ele-

ments; all other present blocks are simply ignored. Thus, in general, NEXUS �les do not have

to be preprocessed to be compatible with PhyloTargeting, as long as they contain the necessary

standard blocks together with valid information in it.

Every NEXUS �le must also start with a #NEXUS line. Furthermore, in the original NEXUS

speci�cation [42], eight primary public blocks are described and mentioned. However, we support

only the following 3 blocks: TAXA, CHARACTERS, and TREES. All of them are obligatory and each

block has to start with a `BEGIN [name of block]' statement and has to end with an `END;'

statement. These two statements are not allowed to appear within an already started block (see

NEXUS speci�cation for details).

We now describe mandatory and optional elements within these blocks and all optional statements

are marked with *.

- CHARACTERS block

This block de�nes characters or traits that represent biological features. It must appear at

least once, but several instances are supported and common. However, we have to distinguish

between continuous characters and discrete characters, and describe both kinds separately.

Character values can be missing, and this should be indicated by a ? symbol. Characters

can be labeled, but this feature is optional. If no labeling is found, then the name of the

trait will be undef in the PhyloTargeting application.

1. Continuous characters

At least one blank is mandatory between the character values, and delimiter symbol

must be `.'.

BEGIN CHARACTERS;

DIMENSIONS NCHAR= [number_of_characters];

FORMAT DATATYPE = CONTINUOUS

CHARSTATELABELS*

1 [char_name_1],

2 [char_name_2],

...

m [char_name_m];

MATRIX

[species_name_1] [value_char_1] [value_char_2] ... [value_char_m]

[species_name_2] [value_char_1] [value_char_2] ... [value_char_m]

...

[species_name_n] [value_char_1] [value_char_2] ... [value_char_m]

;

END;

2. Discrete characters

The default symbol for missing values is ?, and character values must not be separated

by blanks.

BEGIN CHARACTERS;
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DIMENSIONS NCHAR= [number_of_characters];

FORMAT DATATYPE = STANDARD MISSING = [symbol_for_missing_data]

SYMBOLS = [all_valid_states]

CHARSTATELABELS*

1 [char_name_1],

2 [char_name_2],

...

m [char_name_m];

MATRIX

[species_name_1][value_char_1][value_char_2]...[value_char_m]

[species_name_2][value_char_1][value_char_2]...[value_char_m]

...

[species_name_n][value_char_1][value_char_2]...[value_char_m]

;

END;

- TAXA block

This block de�nes the taxa that are used in the data �le. The block must appear exactly

once, and the number of NTAX must be identical with the number of speci�ed taxa in the

TAXLABELS statement. The format should be as follows:

BEGIN TAXA;

DIMENSIONS NTAX=[number_of_species];

TAXLABELS [species_name_1] [ species_name_2]...[ species_name_n];

END;

- TREE block

This block must appear exactly once and de�nes an arbitrary number of trees on which the

calculation is based. At least one tree must be speci�ed, but more than one is possible as

well. All trees must be in valid NEWICK1 format.

BEGIN TREES;

TRANSLATE

[1] [species_name_1],

[2] [species_name_2],

...

[n] [species_name_n];

TREE [tree_name_1] = [tree_1_in_NEWICK_format];

TREE [tree_name_2] = [tree_2_in_NEWICK_format];

...

TREE [tree_name_k] = [tree_k_in_NEWICK_format];

END;

1http://evolution.genetics.washington.edu/phylip/newicktree.html
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Description of Comparative Analysis

Procedures for Creating the Sleep Dataset

In the following, we describe the procedure for estimating the residuals between brain mass and

body mass using phylogenetically independent contrasts. This was the �nal step for generating

the sleep dataset, and requires some explanation.

1. We expect a highly signi�cant correlation between body mass and brain mass [32]. We

therefore have to control for this e�ect, which we did by taking the residuals from the

regression line [12]. With non-phylogenetic analysis, the estimated slope is potentially biased

(see [18]). Thus, we need to estimate the slope while considering the phylogeny.

2. As with all allometric analyses, we log10-transformed the original brain mass and body mass

values for the phylogenetic independent contrasts analysis. We then regressed log-transformed

values of brain mass on log transformed values of body mass using independent contrasts,

as described in steps 3-4, using the PDAP module of Mesquite [51].

3. Determine if the assumptions of phylogenetic independent contrasts are met:

- Check the absolute values of the standardized phylogenetic independent contrasts ver-

sus their standard deviations, represented as the square root of the sum of the branch

lengths [49, 23]. This diagnostic is the most commonly used check of whether the

data and branch lengths meet the assumptions of Brownian motion evolution (e.g.,

see [14, 13]). There should be no signi�cant correlation (�at regression line). How-

ever, if a signi�cant correlation is found, one can conclude that the data and phy-

logeny do not meet the assumptions. As brain mass failed to meet this assumption at

P = 0.01, we applied a branch length transformation within Mesquite (Rho transform

[26] with rho = 0.5). After the branch transformation, the two-tailed P-values for the

log-transformed traits were 0.44 and 0.67.

- Other, less studied assumptions are described in the PDAP manual1.

4. After applying the rho transformation, we determined the slope using least square regression

(b = 0.69, R2 = 0.86), which was computed through the origin [23].

5. Reconstruct the root node values using PDAP (brain mass = 2.83, body mass = 6.82). The

justi�cation is that the regression line must go through the mean in the raw data space,

1http://www.biology.ucr.edu/people/faculty/Garland/PDTREE_Mesquite.doc
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and the root node reconstruction is exactly the mean of the whole tree [24]. Thus, one can

estimate the y-intercept of the regression line (-1.91).

6. Estimate the residuals using the new regression line by calculating the di�erence between the

expected values and the observed values. These di�erences de�ne our new trait � residual

brain mass � that is used in the analysis. A positive residual re�ects that for its body mass, a

species has a larger than expected brain mass, while a negative residual re�ects the opposite.
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